REVISED SYLLABI FOR FIRST DEGREE PROGRAMME IN PHYSICS UNDER

LEARNING OUTCOME-BASED CURRICULUM (LOC) FOR POSTGRADUATE PROGRAMME

(M.Sc. Degree Program in Physics)

(2020 admission onwards)

DEPARTMENT OF PHYSICS

BISHOP MOORE COLLEGE MAVELIKARA

PROGRAMME LEARNING OBJECTIVES (PLOs)

PLO1	Professional Skill Development
	To develop skills for independent and life-long learning, making use of the latest resources including e-resources
	To be able to apply the advanced knowledge acquired for the solution of complex problems in professional, social and personal life
	To acquire communication and presentation skills and become employable in the job market
PLO2	Core Competency Development
	To nurture the enquiring mind with profound and extensive knowledge
	To develop a multidisciplinary perspective and contribute to the knowledge capital of the world in general and the country in particular
PLO3	Innovative Curriculum of Global Relevance
	To develop in depth understanding and global competency in the subject of study
	To acquire global competency in the area of research and create new knowledge in the domain
PLO4	Environmental Sensitivity and Sustainability
	To apply the acquired knowledge towards creating a sustainable environment
	To engage in socially relevant research towards creating a sustainable environment
	To be shaped into proactive citizens sensitive to environmental and social issues
PLO5	Ethical Principles and Holistic Development
	To become competent and responsible citizens, committed to service and communal harmony, steadfast to the cause of women and the marginalized
	To nurture the enquiring mind to be liberated by truth, reflected in research devoid of plagiarism and truthful publication of results
	To create new knowledge as well as affordable methods and systems towards championing the cause of the marginalized

	To evolve as socially responsible individuals committed to service and communal harmony To be moulded into holistically developed individuals with international standards
PLO6	Accessibility and Academic Excellence To be able to apply the scientific knowledge, aesthetics of art and commercial acumen acquired from the programme in real-life situations, work environments and in entrepreneurial endeavours To develop a global perspective and engage in collaborative research with institutes of international eminence

PROGRAMME OUTCOMES (POs)

PO1	Global Competency in Core Discipline
	Postgraduate students will be able to attain extensive knowledge and global competency in their core subject area
PO2	Research Aptitude
	Postgraduate students will develop an ability to apply research intelligence leading to investigations and innovations
PO3	Self-directed and Lifelong Learning
	Postgraduate students will be able to apply the imbibed knowledge to develop a passion for self-directed and lifelong learning
PO4	Professional Ethics
	Postgraduate students will be able to learn and practise ethical principles in their learning, investigations and publication of results
PO5	Discovery of Passion
	Postgraduate students will be able to identify their field of passion in the concerned subject and to put forth efforts to make their passion as their profession
PO6	Sensitivity to Societal Problems

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1	Understand advanced physical concepts and phenomena
PSO 2	Enhance problem solving skills for integrated problem solving approaches in Physics
PSO 3	Imbibe superior experimental skills for handling sensitive instruments for carrying out advanced experiments in Physics
PSO 4	Develop research oriented learning and analytical capabilities
PSO 5	Acquire capability for higher order thinking leading to motivation for research

COGNITIVE LEVELS (CLs)

CL1	Remember
CL2	Understand

CL3	Apply
CL4	Analyse
CL5	Evaluate
CL6	Create

BISHOP MOORE COLLEGE MAVELIKARA DEPARTMENT OF PHYSICS

(2020 - Restructured curriculum)

OVERALL COURSE STRUCTURE (M.Sc. Physics)

Sem	Paper	Course Title	T/P	Category	Hours/	Maximum Marks		
	Code				vv еек	IA	IUE	Total
Ι	PH 211	Classical Mechanics	Т	MC	6	25	75	100
Ι	PH 212	Mathematical Physics	Т	MC	6	25	75	100
Ι	PH 213	Basic Electronics	Т	MC	6	25	75	100
Ι	PH 251	General Physics Practicals	Р	MC	3	-	-	-
Ι	PH 252	Electronics & Computer	Р	MC	4	-	-	-
		Science Practicals						
	Total	for Semester I (S1)	-	-	25	75	225	300
II	PH 221	Modern Optics &	Т	MC	6	25	75	100
		Electromagnetic theory						
II	PH 222	Thermodynamics,	Т	MC	6	25	75	100
		Statistical Physics &						
		Basic Quantum Mechanics						
II	PH 223	Computer Science &	Т	MC	6	25	75	100
		Numerical Techniques						
II	PH 251	General Physics Practicals	Р	MC	3	25	75	100
II	PH 252	Electronics & Computer	Р	MC	4	25	75	100
		Science Practicals						
Total for Semester II (S2)		-	-	25	175	375	500	
Summer Intern			nship T	wo Months				
III	PH 231	Advanced Quantum	Т	MC	6	25	75	100
		Mechanics						

III	PH 232	Atomic and Molecular Spectroscopy	Т	MC	6	25	75	100
III	PH 233	M Materials Science-I	Т	ME	6	25	75	100
III	PH 261	Advanced Physics Practicals	Р	MC	4	-	-	-
III	PH 262	Advanced Electronics Practicals	Р	MC	3	-	-	-
Total	for Seme	ster III (S3)	-	-	25	75	225	300
IV	PH 241	Condensed Matter Physics	Т	MC	6	25	75	100
IV	PH 242	Nuclear & Particle Physics	Т	MC	6	25	75	100
IV	PH 243	M Materials Science-II	Т	ME	6	25	75	100
IV	PH 261	Advanced Physics Practicals	Р	MC	4	25	75	100
IV	PH 262	Advanced Electronics Practicals	Р	MC	3	25	75	100
IV	PH 201	Project	-	-	-	25	75	100
IV	PH 202	Viva voce	-	-	-	-	-	100
Total	for Seme	ster IV (S4)	_	_	25	150	550	700
		Grand Total				425	1375	1800

 $L\ -\ Lecture\ ;\ P-Practical;\ IA\ -\ Internal\ Assessment\ ;\ MC-\ Main\ Core,\ ME-\ Main\ Elective\ -\ University\ Exam$

COURSE DESCRIPTIONS

Course Code	PH 211
Course Title	Classical Mechanics
Credits	02
Hours/week	06
Category	Core Course (CC) -Theory
Semester	Ι
Regulation	2020
Course Overview	
 Drawbacks problems i Introductio Lagrangiar Extension transforma Rigid body Eigen valu General an Nonlinear 	s of Newtonian approach and necessity of new approaches to solve advanced n classical mechanical systems. on to constraints, applying conservation theorems to dynamic systems n and Hamiltonian formulations of classical mechanics. of Hamilton to Hamilton Jacobi formulation, Poisson brackets and canonical tions. v dynamics and physical quantities in non-inertial frames e equation for various oscillatory systems d special theory of relativity dynamics and chaos
Course Objectiv	e
 To introdu To demons To illustrat To provide To analyze 	ce and demonstrate Lagrangian formulation through applications. strate the use of Hamiltonian formulation and Hamilton-Jacobi equations. te the motion of rigid bodies using Euler angles and Euler's equations. basic and advanced concepts of special and general theory of relativity the nonlinear dynamical systems and to explain the concepts of classical chaos.
Prerequisites	 Classical Mechanics (or Mechanics) at the Undergraduate Mathematical Physics (or Mathematics) at the Undergraduate Level

Unit	Content	Hours	COs	Cognitive Level
Ι	 Lagrangian Mechanics Mechanics of a particle and system of particles- constraints- D'Alembert's principle and Lagrange's equations-simple applications of Lagrangian formulation-Hamilton's principle techniques of calculus of variations-derivation of Lagrange's equations from Hamilton's principle-conservation theorems and symmetry properties. Two body central force problem Reduction to one body problem-equations of motion-equivalent one-dimensional problem differential equation for the orbit in the case of integrable power law potentials- Virial theorem- Kepler's problem-inverse square law of force-scattering in central force field transformation of the scattering problem to laboratory coordinates. 	36	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
	Theory of small oscillations Equilibrium and potential energy-theory of small oscillations-normal modes- two coupled pendula- longitudinal vibrations of carbon dioxide molecule.			
П	Hamiltonian MechanicsGeneralised momentum and cyclic coordinates-conservation theorems-Hamilton's equations examples in Hamiltonian dynamics (harmonic oscillator, motion of a particle in a central force field, charged particle in an electromagnetic field, compound pendulum)- canonical transformations-generating functions- poisson brackets- Liouoville's theorem.	36	CO1; CO2; CO3;	CL1; CL2; CL3; CL4;
	Hamilton-Jacobi equations Hamilton-Jacobi equation-harmonic oscillator as an example-separation of variables in Hamilton-Jacobi equation-action angle variables Kepler's problem		CO5; CO6	CL5; CL6
	Variables-Kepler's problem.Rigid body dynamicsGeneralised coordinates of rigid body-Euler's angles- infinitesimal rotations as vectors angular momentum and intertia tensor- Euler's equations of motion of a rigid body-force free			

	motion of symmetrical top-motion of heavy symmetrical top.								
ш	Special and General Theory of Relativity Postulates of special theory- four-vectors and tensors- relativistic particle dynamics- Lorentz transformations -relativistic Lagrangian- mass- energy equivalence- covariant Lagrangian, Relativistic Langrangian, Mass energy equivalence. General theory of relativity principle of equivalence applications - ideas of Riemannian geometry-space time curvature geodesics –Einstein's equations of General theory of relativity, Observational evidence to general theory of relativity.	36	36	CO1; CO2; CO3;	CO1; CO2; CO3;	CO1; CO2; 36 CO3;	CO1; CO2; 36 CO3;	CO1; CO2; 36 CO3;	CL1; CL2; CL3;
	Introduction to non-linear dynamics Linear and nonlinear systems-integration of second order non-linear differential equations pendulum equation-phase plane analysis of dynamical systems-linear stability analysis- limit cycles.		CO4; CO5; CO6	CL4; CL5; CL6					
	Elements of classical chaos Bifurcation- logistic map-strange attractors- Lyapunov exponent and Chaos-ideas of fractals- solitary waves- Kdv equations and solutions								
Books	for Study: H. Goldstein, C.Pooleabd S. Safko, Classical Mecha (2008 Print) V.B. Bhatia, Classical Mechanics with in chaos, Narosa Publishing House (1997)	anics ,3rd E atroduction t	Edn, Pearson to nonlinear o	Education Inc scillations and					
2. 3. 4. 5. 6.	J.C. Upadyaya, Classical Mechanics , Revised Ed (2005) G. Aruldas, Classica lMechanics , Prentice Hall of In K.D.Krori, Fundamentals of Special and General Rel S.K. Srivastava, General Relativity and Cosmology , P.G Drazin and R.S Johnson, Solitons – an Introductio	ition, Hima Idia Pvt Ltd lativity , PH PHI learnir on , Cambrid	llaya Publish (2008 Print) I Learning Port Ng Pot Ltd (20 dge Universit	ing Company vt Ltd (2010) 008) ty Press (1989)					
Books	for Reference:								
1. 2. 3. 4.	 N.C. Rana and B.S. Joag, Classical Mechanics, Tata McGraw Hill (1991) M. Tabor Chaos and integrability in nonlinear dynamics, John wiley & Sons (1989) R.K. Pathria, The Theory of Relativity, Second Edition, Over Publications (2003) Laxmana , "Nonlinear Dynamics" Springer Verlag,(2001) 								
Web I	Resources								
1. 2.	Classical Physics Video Prof. V. Balakrishnan IIT M http://nptel.iitm.ac.in/video.php?subjectId=12210602 Special Topics in Classical Mechanics Video Prof. P	adras 27 .C. Deshmu	kh IIT Madra	as					

http://nptel.iitm.ac.in/courses/115106068/

- 3. Physics I Oscillations & Waves Video Prof. S. Bharadwaj IIT Kharagpur http://nptel.iitm.ac.in/video.php?subjectId=122105023
- 4. Chaos, Fractals & Dynamic Systems Video Prof. S. Banerjee IIT Kharagpur http://nptel.iitm.ac.in/video.php?subjectId=108105054

COs	CO Description	Cognitive
005		Level
CO1	Review Newtonian mechanics in depth	CL1; CL2; CL3;
		CL4; CL5
CO2	Apply variational principle, Euler-Lagrange equation of	CL1; CL2; CL3;
	motion and symmetries for analyzing the mechanical systems	CL4; CL5
CO3	Analyze different kind of 1-particle and 2-particle systems	CL1; CL2; CL3;
	within the Lagrangian formalism	CL4; CL5
CO4	Analyze motion of a rigid body (for example symmetrical top)	CL1; CL2; CL3;
	within the Lagrangian formalism	CL4; CL5; CL6
CO5	Determine normal modes of various interacting systems of	CL1; CL2; CL3;
	particles	CL4; CL5; CL6
CO6	Analyze different kinds of mechanical systems within the	CL1; CL2; CL3;
	Hamiltonian formalism	CL4; CL5; CL6
CO7	Review Hamilton-Jacobi formalism as the closest approach	CL1; CL2; CL3;
	from Classical Mechanics to Quantum Mechanics	CL4; CL5; CL6
CO8	Analyze stability of dynamical systems and to explain the	CL1; CL2; CL3;
	concepts of classical chaos.	CL4; CL5; CL6

Course Code	PH 212
Course Title	Mathematical Physics
Credits	
Hours/week	06
Category	Core Course (CC) -Theory
Semester	Ι
Regulation	2020
Course Overviev	V
 This course in real vari This course operations. This will end mechanics Will be intriphysical prints This course relevant to 	e introduces the various aspects of complex analysis and uses of residue theorem able integrals e aims to introduce basic structure of linear vector space and various abstract nable them to bring out important special functions necessary for quantum and electrodynamics. roduced to the techniques of Fourier transform and its applications to various oblems and basics of Laplace transform e will also discuss the various rules of probability, distribution functions that are statistical and quantum mechanics.
Course Objective	e
1. This cours developing	e is aimed to equip the students with the mathematical techniques used for strong background in the basic and advanced level problems.
2. To calculat	te the real variable integrals using residue theorem.
3. To familia relevant br	arrise and use the Linear vector space concepts to quantum mechanics and other anches of physics
4. To study ex	xclusively the solution method for various special functions.
5. To apply F	ourier transform techniques to various physical systems.

- 6. To apply the rules of probability and also use the distribution functions in the relevant physical process
- 7. The course describes about curvilinear coordinates, Fourier series and transforms, probability distributions, partial differential equations and different integral transforms, special functions, tensors and group theory

Prerequisites	• Notion of set theory, mapping between sets and invertibility of maps.
	• Definition of group.
	• Differential equations with constant coefficients, partial differentiation.

sis and Matrices vector analysis-vector calculus ogonal c u r v i l i n e a r coordinates gence, curl, Laplacian in cylindrical polar coordinates orthogonal and atrices- Hermitian matrices- n of matrices- normal matrices- ton theorem ysis ann conditions-Cauchy's integral nd formula-singularities and us of residues-dispersion relations	36	CO1; CO2; CO3	CL1; CL2; CL3;
ann conditions-Cauchy's integral nd formula-singularities and us of residues-dispersion relations	50	005	CLJ,
and applications (8 hours) General of Fourier series, Complex Parseval's identity, Fourier's ier transforms and its properties. d simple properties of probability- bles- Chebychev inequality and nerating function-discrete and probability distributions-binomial poisson distributions- Gauss Normal ror analysis and least square fitting- student 't' distributions			CL4; CL5
quations ntial equations-first order equations- variables-singular points series		CO4; CO5;	CL1; CL2; CL3;
	tial equations-first order equations- variables-singular points series ad Frobenius method- non- partial differential equations ons-Laplace transforms and inverse	atial equations-first order equations- variables-singular points series and Frobenius method- non- partial differential equations ons-Laplace transforms and inverse forms-applications to solution of tial equations	tial equations-first order equations- variables-singular points series and Frobenius method- non- s partial differential equations ons-Laplace transforms and inverse forms-applications to solution of tial equations

	Bessel functions of the first kind-orthogonality-			CL5;
	Neumann functions-Hankel fuctions modified CL6			
	Bessel functions-spherical Bessel functions-			
	Legendre functions-generating function-recurrence			
	relations and orthogonality-associated Legendre			
	functions spherical harmonics-Hermite functions-			
	Lagurerre functions-Chebyshev polynomials			
	hypergeometric functions.			
	Tensor analysis			
	Notations and conventions in tensor analysis-			
	Einstein's summation convention-covariant and			
Ш	contravariant and mixed tensors-algeoratic			
	symmetric tensors-tensor calculus- Christoffel		007.0	CL 1.
	symbols-kinematics in Riemann space Riemann-		CO/;C	CLI;
	Christoffel tensor.		08	CL2;
	Group theory			CL3;
	Definitions of a group-elementary properties-sub	36		CL4;
	groups-homomorphism and isomorphism of			CL5;
	groups-representation of groups-reducible and			CI 6
	irreducible representations-simple applications in			CLU
	groups SU(2) groups and their representations			
Deale	Groups (50(2)) groups and men representations			
DOOK	G B Arfken and H I Weber Mathematical methods for	· Physeisit	ts 6 th Edi	tion Elsavier
	(2005).	1 119 50151	.5 ,0 ui 12ui	
2.	H.K. Dass and R. Verma, Mathematical Physics, S.Chand	1 & Co Pv	rt Ltd (1997	7)
3.	3. A.W. Joshi, Matrices and Tensors in Physics .3 rd Edition New Age International Pub (1995)			l Pub (1995)
	B.D. Gupta, Mathematical Physics, 4th Edition, Vikas Pu	blishing H	House (2004	4)
4.	4. A.W. Joshi, Elements of Group Theory for Physicists, Fourth Edition, New Age			, New Age
	International Pub (1997).			
5.	S.C. Bagchi, S.Madan, A, Sitaram, V.B Tewari, A first co	ourse in re	epresentatio	n theory and
	linear Lie groups, Universities Press (India) Pvt Ltd (2000).		
6.	C. Harper, Introduction to Mathematical Physics, Prentice	Hall (198	36)	
Books	s for Reference:			
	1. Harry Lass, Vector and Tensor Analysis, McGraw Hill	Pub (195	0)	
	2. M.L.Jain, Vector Spaces and Matrices in Physics, Alph	a Science	Internation	al (2001)
	3. W.W.Bell, Special Functions for Scientists and Engine	ers, Dove	r Publicatio	ons (2004)
	4. W.K.Tung, Group theory in Physics, World Scientific	Pub Co (1	999)	
	5. A.K. Ghatak, I.C. Goyalamd S.T. Chua, Mathematical	Physics, N	Macmillan l	India (1985)
Web]	Resources			
1.	Mathematics I Video Prof. Swagato K. Ray, Prof. Shobha	Madan,Dı	r. P. Shunm	ugaraj
	http://nptel.iitm.ac.in/video.php?subjectId=122104017			
2.	Mathematics II Video Prof. Sunita Gakkhar, Prof. H.G. Sl	narma, Dr	. Tanuja Sri	ivastava IIT
1	Roorkee <u>http://nptel.iitm.ac.in/video.php?subjectId=12210</u>	<u>)7036</u>		

3. Mathematics III Video Prof. P.N. Agrawal, Dr. Tanuja Srivastava IIT Roorkee http://nptel.iitm.ac.in/video.php?subjectId=122107037

COs	CO Description	Cognitive Level
CO1	To apply and analyze the various vector and matrix operations and to perform complex analysis for solving physical problems.	CL1; CL2; CL3; CL4; CL5; CL6
CO2	Should be able to calculate the period of a given a function and utilize the concepts of Fourier series, obtain its Fourier transform.	CL1; CL2; CL3; CL4; CL5; CL6
CO3	To explain and differentiate different probabilistic distributions.	CL1; CL2; CL3; CL4; CL5; CL6
CO4	To apply partial differential equations and special functions for solving mathematical problems	CL1; CL2; CL3; CL4; CL5; CL6
CO5	Understand the Definition and properties of Laplace transform and use them to solve ODEs with given boundary conditions.	CL1; CL2; CL3; CL4; CL5; CL6
CO6	Solve PDE by applying separation of variable method in the cases with rectangular and circular boundaries in 1, 2 and 3 dimensions.	CL1; CL2; CL3; CL4; CL5; CL6
CO7	Understand the concepts, terminology and principles of analysing groups and apply concepts of group theoretical operations	CL1; CL2; CL3; CL4; CL5; CL6
CO8	Learn the terminology, concepts and principles of analysing tensors. Learn tensor algebra. Learn Christoffel symbols and Reimann curvature tensor which are crucial to understand general relativity.	CL1; CL2; CL3; CL4; CL5; CL6

Course Code	PH 213
Course Title	BASIC ELECTRONICS
Credits	
Hours/week	06
Category	Core Course (CC)-Theory
Semester	Ι
Regulation	2020
Course Overview	

- 1. This course deals with the types of network theorems used in circuit analysis. Students will learn to obtain the equivalent circuit using Thevenin's theorem and Norton's theorem and apply in electrical circuit analysis.
- 2. Students will gain knowledge on semiconductor devices like JFET, MOSFET, UJT, SCR and their applications.
- 3. Students will be introduced to the various applications of logic gates.
- 4. An introduction to operational amplifiers and the applications of OPAMPs for analog computation, filters and waveform generators will be given.
- 5. Importance of D/A and A/D conversions using OPAMPs will be discussed.

Course Objective

- 1. This course is aimed to introduce the students with the basic knowledge of analog and digital circuits.
- 2. To understand and appreciate the operation and applications of semiconductor devices.
- 3. To learn the concepts of various amplifier circuits, solid state electronic devices, sequential digital circuits, optoelectronics devices and measurements using electronic instruments.
- 4. To develop skills to understand and construct circuits using operational amplifiers.

Prerequisites	Basic course on Electronics or Electric circuits

Unit	Content	Hours	COs	Cognitive Level
Ι	 Selections from electronic circuits Frequency response of an amplifier circuits-power and voltage gain- impedance matching Bode plots-Miller effects- rise time bandwidth relations-frequency analysis of BJT and FET amplifier stages Operational amplifier and its applications Opamp - frequency response, poles and zeroes, transfer functions (derivation not required), expression for phase angle- Active filters-first order and second order Butterworth transfer function-first order and second order active filters- low pass, high pass and band pass filters- comparators-OP Amp as a voltage comparator-zero crossing detectors-Schmitt trigger-voltage regulators- square, triangular and saw tooth wave form generators-Weinberg oscillator- monostable and astable multivibrator circuits using IC 555 timer- Phase Locked Loop circuits (PLL) Microwave Solid State Electronic Devices Tunnel diode-TRAPATT diode-Gunn diode 	36	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
	Arithmetic and Data Processing Digital Circuits Binary adder and subtractor- arithmetic logic unit- binary multiplication and division arithmetic circuits using HDL- multiplexers- demultiplexers- BCD to decimal decoder- seven segment decoder-	10	CO1; CO2; CO3; CO4; CO5;	CL1; CL2; CL3; CL4; CL5;

П	comparator- programmable logic arrays Sequential Digital Circuits Flip flops- edge triggered- SR flip flops- JK flip flop- D- flip flop- JK master-slave flip flop- different types of registers (SISO, SIPO, PISO, PIPO)- universal shift registers applications- counter asynchronous and synchronous electronic			
	counters- decade counters- digital clock.			
III	Optical fibre as a wave guide-mode theory of circular wave guidemodes in step index fibres- signal distortion in optical fibres- group delay, material dispersion, wave guide dispersion- sources of attenuation- absorption, scattering, bending loss, core and cladding loss- optical sources- LED's- structure, quantum efficiency and power- laser diodes modes and threshold conditions rate			
	equations, efficiency and resonant frequency photo detector- pin and avalanche photodiodes- principles- optical amplifier- basic applications and types, semiconductor optical amplifiers, erbium doped fibre amplifiers.	36	CO1; CO2; CO3; CO4; CO5;	CL1; CL2; CL3; CL4; CL5;
	Electronic Instrumentation Electronic measurements and instruments- comparison between analog and digital instruments- performance and dynamic characteristics-ideas of errors and measurement standards- voltmeters-ammeters- CRO- Block diagram, CRT, CRT circuits, vertical deflection system- delay line, multiple trace, horizontal deflection system, oscilloscope probes and transducers, oscilloscope techniques, storage oscilloscope, digital storage oscilloscope- classification of transducers-active and passive transducers-force and displacement transducers- strain gauges- temperature measurements- thermistors- thermocouples-flow measurements.		CO6	CL6
Books	for Study:	T () (a uni	(2007)
1. 2. 1	A. Malvino and D.J.Bates, Electrinics Prinicples ,7 th Editio R.A. Gayakwad, Operational Amplifiers and Linear integ India (2000)	on, Tata Mc	Graw Hill uits , Prei	(2007) ntice Hall of
3. 1 4. 1 5. 2 6. 1	M.S. Tyagi, Introduction to semiconductior materials and c B.G. Streetman, S.K. Banerjee, Solid state electronic devic J. Millman, C. Halkias and C.D. Parikh, Integrated Electron D.P. Leach, A.P. Malvino, and G. Saha, Digital principles Hill (2011)	devices, Wi es. Pearson nics, Tata I s and applic	iley India ninc (2010 McGraw H eations ,Ta	(2005))) Hill (2010) tta Mc Graw
7. (8.]	G.Keiser, Optical Fibre Communication ,3 rd edition, Mc Gr Lal Kishore , Electronic measurements and Instrumentation Ltd (2010)	raw Pub (20 n , Dorling)00) Kindersle	y (India) Pvt

- 9. W.D. Cooper, A.O. Helfrik and H. Albert, Electronic Instrumentation and measurement Techniques, PHI (1997)
- 10. Electronic Devices and Circuits Theory, Robert L. Boylestad, Louis Nashelsky, Pearson 10th edition (2009).

Books for Reference:

- 1. T.F. Bogart Jr, J.S. Beasley and G. Reid, Electronic devices and circuits, Sixth Edition, Pearson Inc (2004)
- 2. Thomas. L. Floyd, Digital Fundamentals, 10 th edition, Dorling Kindersley (India) Pvt Ltd (2011)
- 3. Joachion Piprek, Semiconductor Optoelectronic Devices, Academic Press (2003)

Web Resources

- 1. Electronics Video Prof. D.C. Dube IIT Delhi,
- 2. <u>http://nptel.iitm.ac.in/courses/115102014/</u>
- 3. Digital Integrated Circuits Video Prof. Amitava Dasgupta IIT Madras <u>http://nptel.iitm.ac.in/video.php?subjectId=108106069</u>
- 4. https://nptel.ac.in/courses/108/105/108105159/
- 5. <u>https://nptel.ac.in/courses/108/108/108108122/</u>
- 6. https://nptel.ac.in/courses/108/105/108105132/
- 7. https://nptel.ac.in/courses/108/108/108108114/

COs	CO Description	Cognitive Level
CO1	Identify and develop ideas about BJT and FET amplifier circuits and analyze their frequency response	CL1; CL2; CL3; CL4
CO2	Understand the principles of operational amplifiers, design and develop various electronic circuits using opamp	CL1; CL2; CL3; CL4; CL5; CL6
CO3	Understand and analyse various digital and sequential circuits	CL1; CL2; CL3
CO4	Develop a knowledge about different microwave solid state devices and electronic instruments	CL1; CL2
CO5	Understand and differentiate various principles of optical communication systems	CL1; CL2; CL3

Course Code	PH 221
Course Title	Modern Optics and Electromagnetic Theory
Credits	
Hours/week	06

Category	Core Course (CC)-Theory		
Semester	Ш		
Regulation	2020		
Course Overview			
 This course This course This course electromage and chemise It aims to pelectric and Students we the level of It aims to se To study the 	e covers linear and non-linear optical phenomenon se aims to bridge the gap between the fundamental principles taught in metism and its practical application to specific fields such as materials, physics, stry related to energy storage and harvesting. provide students with an introduction to the principles and behaviors of dynamical d magnetic systems, and a theoretical foundation in classical field theory. rill examine the electrodynamics starting from the nature of electrical force up to f in-depth solutions of Maxwell equations. study the propagation of electromagnetic waves and the different types of waves an relativistic electrodynamics, radiation and antenna theory.		
Course Objectiv	e		
1. To discuss	the relation between Electrostatic field and Electrostatic Potential.		
2. To make u	2. To make use of Ampere's law to calculate the magnetic fields.		
3. To use Ma and curren	xwell equations in analyzing the electromagnetic field due to time varying charge t distribution.		
4. To analyz electromag	the charged particle dynamics and radiation from localized time varying metic sources.		
5. To generaliz energy or infor	the concepts of guided structures like transmission line, means of transporting mation, commonly used in power distribution and communication.		
Prerequisites	• Notion of set theory, mapping between sets and invertibility of maps.		
	• Definition of group.		
	• Differential equations with constant coefficients, partial differentiation.		

Unit	Content	Hours	COs	Cognitive Level
I	Modern Optics Multiple beam interference-Fabry-Perot interferometer- theory of multilayer films antireflection films and high reflectance films - Fresnel- Kirchoff integral theorem and formula- Fraunhofer and Fresnel diffraction patterns and theory-applications of Fourier transforms to diffraction- acoustic- optic modulation- basic ideas of Raman-Nath diffraction and Bragg diffraction- holography as wavefront	36	CO1	Level CL2; CL3
	optical activity and Faraday rotation Non-linear Optics			
	Harmonic generation- second harmonic generation- phase matching- third harmonic			

	generation- optical mixing- para magnetization of light- self focusing- multi quantum photoelectric effect- two photon process and theory- multiphoton processes- three photon processes- second harmonic generation- parametric generation of light			
	Electromagnetic Waves			
п	Electromagnetic wave equations- electromagnetic waves in non-conducting media- plane waves in vacuum-energy and momentum of electromagnetic waves-propagation through linear media- reflection and transmission at normal and oblique incidence-electromagnetic waves in conductors-modified wave equations and plane waves in conducting media reflection and transmission at a conducting interface	36	CO2; CO3;	CL3; CL4; CL5
	Relativistic Electrodynamics	50		
	Vector and scalar potential- gauge transformations- Coulomb gauge and Lorentz gauge Magnetism as a relativistic phenomenon- transformation of the field-electric field of a uniformly moving point charge-electrodynamics in tensor notation-electromagnetic field tensor- potential formulation of relativistic electrodynamics			
	Radiation			
	Dipole radiation- electric dipole radiation- magnetic dipole radiation- radiation from an arbitrary source- point charges- power radiated by a point charge- radiation reaction			
	Transmission lines			
	Transmission line parameters and equations-input impedance-standing wave ratio and power- The Smith Chart-applications of transmission lines Waveguides		CO4;	CL3; CL4;
III	Rectangular wave guides-transverse magnetic (TM) modes-Transverse electric (TE) modes- wave propagation in the wave guide-power transmission and attenuation	36 CO5		CL5; CL6
	Antennas			
	Radiation from Hertzian dipole-half wave dipole antenna-quarter wave monopole antenna- antenna characteristics -antenna arrays-effective area and Friji's equations			
Books f	For Study:	l		

1.	G.R. Fowles,,	Introduction to	Modern Optics	, Second Edition,	Dover Publications	(1989).
----	---------------	-----------------	---------------	-------------------	---------------------------	---------

- 2. A. Yariv, Introduction to Optical electronics, Holt, Reinhart and Winston (1976).
- 3. A. Ghatak and K. Thyagarajan, Optical Electronics , Cambridge University Press (1998)
- 4. D. Roody and J. Coolen, Electronic Communications , Fourth Edition, Dorling Kindersley (India) Pvt Ltd (2008)
- 5. D.J. Griffiths, Introduction to Electrodynamics, PHI Learning India Pvt Ltd (2007).
- 6. M.N.O. Sadiku, Elements of electromagnetics, Oxford University Press (2007).

7. B.B. Laud, Lasers and Non-linear Optics, Second Edition, Wiley-Eastern Limited (1991) Books for Reference:

- 1 J.R. Meyer-Arendt, Introduction to Classical and Modern Optics, Prentice Hall Intl (1995)
- 2. J.C. Palais, Fibre optic communications, Fifth Edition, Pearson Education Inc (2005)
- 3. E.C. Jordan and K.G. Balmain, Electromagnetic waves and radiating systems, Second Edition, Pearson Education (2002)
- 4. D.K.Cheng, Field and Wave electromagnetics, Second Edition, Addison Wesley (1999).
- 5. L.Ganesan and S.S.Sreejamole, Transmission lines and wave guides, Second Edition, Tata McGraw Hill (2010)

Web Resources

- 1. https://web.njit.edu/~vitaly/621/notes621_old.pdf
- NPTEL video lectures available online https://nptel.ac.in/
- 3. <u>https://himafi.fmipa.unej.ac.id/wp-content/uploads/sites/16/2018/09/Introduction-toElectrodinamic.pdf</u>
- 4. https://ocw.mit.edu/courses/physics/8-07-electromagnetism-ii-fall-2012/lecture-notes/
- 5. <u>https://www.freebookcentre.net/physics-books-download/Lecture-Notes-onElectrodynamics.html</u>
- 6. <u>https://www.worldcat.org/title/introduction-to-electrodynamics/oclc/1004614008</u>

COs	CO Description	Cognitive Level
CO1	To demonstrate the linear and nonlinear optical phenomena.	CL2; CL3
CO2	To explain and discuss propagation of electromagnetic waves through different media.	CL3; CL4; CL5
CO3	To restate formulations and relativistic effects in electrodynamics.	CL3; CL4; CL5
CO4	To analyze the propagation of electromagnetic waves through waveguides.	CL3; CL4
CO5	To use radiation theory in developing different antennas.	CL4; CL5; CL6
Course C	Code PH 222	
Course 7	Title Thermodynamics, Statistical Physics and Basic Quantum Mechanics Mechanics	n
Credits		

Hours/wee	k	06
Category		Core Course (CC)-Theory
Semester		П
Regulation	_	2020
Course Ov	erview	
1. 2. 3. 4.	This found This o prelim An int Use S	course is aimed to introduce the concepts of thermodynamic equations, ations of classical and quantum statistics. course will also provide basic rules for classification of phase transitions and a ninary attempt to understand non-equilibrium phenomena. troduction to linear vector space and the associated algebra chroedinger formalism to solve 1 and 3D problems to understand the concepts
	exclus	sive to quantum mechanics.
Course Ob	ojectiv	e
1.	To esti thermo	mate and use the statistical concept of entropy and relate its partial derivative with dynamical parameters.
2. To un apply		lerstand the concept of ensemble, ensemble averages and partition function and hem to classical ideal gas and system of harmonic oscillators.
3. To stud		dy exclusively when and how to use Bose-Einstein (BE) and Fermi-Dirac (FD) cs.
4.	To dist explair	tinguish between classical and quantum statistics and the need to use them for ning some exotic phenomena in both BE and FD statistics.
5.	To app	preciate and use the concept of fluctuation in statistics. Identify those parameters
6.	To leas	rn quantum mechanics from the abstract concept of linear vector space, linear ors, and their algebra, unitary transformation and its consequence.
7. Make quanti		extensive use of Schroedinger representation to learn about the newer concepts of zation of energy, and angular momentum and tunneling across barrier.
8. To understand and appreciate the commutative and non-commutative a special context of angular momentum in general.		derstand and appreciate the commutative and non-commutative algebra in the context of angular momentum in general.
Prerequisit	es	 Basic ideas on the laws of thermodynamics and relations between thermodynamic variables.

Unit	Content	Hours	COs	Cognitive Level
	Thermodynamic Relations and Consequences			
I	Thermo dyanamic functions and Maxwells's equations-Clausius -Claepyrans equations Properties of thermos dyanamic potentials-Gibbs- Helmoltz relation-thermodynamic equilibrium Nernst –heat theorem and its consequences- Gibb's phase rule-chemical potential-vapour	36	CO1; CO2;	CL1; CL2;

	pressure relation and chemical constants		CO3;	CL3;
	Foundations of Classical Statistical Physics Phase space-ensembles-Lioville's theorem- statistical equilibrium-microcanonical ensemble partition functions and thermodynamic quantities-Gibb's paradox-Maxwell-Boltzmann distribution laws-grand canonical ensemble ideas of Raman-Nath diffraction and Bragg diffraction- holography as wavefront reconstruction- propagation of light in crystals-optical activity		CO4; CO5; CO6	CL4; CL5; CL6
	and Faraday rotation .			
Π	Quantum Statistics Quantum statistics of classical particles-density matrix in microcaonical, canonical and grand canonical ensembles-Bose Einstein statistics and Bose Einstein distribution law-Maxwell Boltzmann statistics and Maxwell Boltzmann distribution law—Fermi Dirac statistics and Fermi Dirac distribution law-comparison of three types of statistics-applications of quantum statistics-Planck radiation laws-Bose Einstein gas and Bose Einstein condensation—Fermi Dirac gas-electron gas in metals-thermionic emission- statistical theory of white dwarfs Phase Transitions Triple point-Vanderwal's equation and phase	36	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
	transitions-first and second order phase transitions- Ehrenfest's equations- Ising model			
III	Foundations of Quantum Mechanics Basic postulates if quantum mechanics- Hilberts space- observables- Hermitian operators general statistical interpretation-Uncertainty principle- minimum uncertainty wave packet energy time uncertainty principle-Dirac notation-Matrix representation of state vectors and operators- change of representations- eigenvalue problem in matrix mechanics-energy and momentum representations-unitary transformations involving time- Schrodinger, Heisenberg and interaction pictures.	36	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6
	Exactly Solvable Problems in Quantum Mechanics			
	One dimensional eigen value problems-square well potential-potential barrier-alpha particle emission-Bloch waves in periodic potential-linear harmonic oscillator problem using wave mechanics and operator methods-free particle			

COS		Level				
COs	CO Description	Cognitive				
Course	Outcome (Cos) and Cognitive Level Mapping					
4.	https://nptel.ac.in/courses/115106066/					
3.	www.nptel/videos.in/2012/11/quantum-physics.html 12.					
2.	http://web.mit.edu/8.333/www/lectures/superfluidity/SuperfluidiHe.h	<u>ntml</u>				
	http://nptel.iitm.ac.in/video.php?subjectId=112105123					
1.	Basic Thermodynamics Video Prof. S.K. Som IIT Kharagpur					
Web F	Resources					
5.	V.K. Thankappan, Quantum Mechanics, Second Edition, New Age Inter (2003).	national Pvt Ltd				
4. 4	Academic Publishers (2004).					
	2010) A. Ghatak and S. Lokanathan, Quantum Machanics Theory and Applicati	ions Klupwor				
3.]	P.M. Mathews and K. Venkitesan, A Text Book of Quantum Mechanics, 7	Fata Mc Graw Hill				
2. 3	S.K. Sinha, Statistical Mechanics-Theory and Applications, Tata Mc Gra	w Hill				
1.]	R.K. Srivastava and J. Asok , Statistical Mechanics, Wiley Easter Ltd (20	005)				
Books	for Reference:					
8.	N. Zettili, Quantum Mechanics concepts and Applications, Second edit	10n, W1ley (2009).				
7.	J. J Sakurai , Modern Quantum Mechanics, Second edition, Pearson (20	010).				
6.	G. Aruldas, Quantum Mechanics, Second Edition, PHI learning Pvt Ltd	1 (2009).				
	((2005)					
5.	D.J. Griffiths, Introduction to Quantum Mechanics , Second Edition, Pe	arson Education Inc				
4.	S. Devanarayanan, Quantum Mechanics , Sci Tech Publications (India) Pvt Ltd (2005)				
3.	B.K. Agarwal and Hari Prakash, Quantum Mechanics , Prentice Hall of	India (2002)				
2.	(2009)	s, meerut and Deim				
$\begin{vmatrix} 1.\\ 2 \end{vmatrix}$	R. K. Pathria, Statistical Mechanics, Pergamon Press (1991)	Moomst and Dalla				
Books	for Study:					
	symmetric potential-rigid rotator-hydrogen atom problem-three dimensional potential well- Deuteron					
	wave functions and solutions-three dimensional eigen value problems-particle moving in spherical					

COs	CO Description	Cognitive Level
CO1	To explain the basic thermodynamic relations, Maxwell's equations and its consequences.	CL1; CL2; CL3; CL4; CL5; CL6
CO2	To equip the students to demonstrate and apply classical and quantum statistics in different physical phenomena.	CL1; CL2; CL3; CL4; CL5; CL6
CO3	To distinguish the different phase transitions using Ising model.	CL1; CL2; CL3; CL4; CL5; CL6
CO4	Outline and apply foundations of quantum mechanics.	CL1; CL2; CL3; CL4; CL5; CL6

CO5	CL1; CL2; CL3;
	CL4; CL5; CL6

Cours	e Code	PH 223		
Cours	e Title	Computer Science and Numerical Techniques		
Credit	S			
Hours	/week	06		
Categ	ory	Core Course (CC)-Theory		
Semes	ster	П		
Regul	ation	2020		
Cours	e Overview			
 This course provides introduction to computer architecture, architecture of microprocess 8085, the different addressing modes and assembly language programming. Introduction to Python, data types, variables, simple functions, math, and flow control will covered in this course. It focusses mainly on problem solving skills using computational tools relevant to science a C++ programming and numerical methods. 				
Cours	se Objectiv	e		
1.	To understa	and the architecture and instruction set of microprocessor 8085		
2.	To write as	sembly language programs using the instruction set for microprocessor 8085		
3. Learn the d		lata types, simple functions, math and flow control in Python and gain competence		
in writing and executing programs in Python.				
Prerequisites		• Basic ideas on the laws of thermodynamics and relations between thermodynamic variables.		

Unit	Content	Hours	COs	Cognitive Level
	Foundations of Computer Science			
	Introduction to computers-computer architecture- memory (RAM and ROM, cache) and storage- I/O devices- operating systems-data communications, computer networks and topology			
	Introduction to Microprocessors			
I	Evolution of microprocessors-microcontrollers and digital signal processors- Intel 8085 8 bit microprocessor- pin description-functional description- 8085 instruction format-addressing modes of 8085- interrupts of 8085- memory	36	CO1; CO2	CL1; CL2; CL6

	interfacing- 8085 machine cycles and Bus timings- assembly language programming of 8085 Introduction to Python Programming Python - Python shell, number, variables, comparisons and logic, Python objects - strings, lists, tuples, loops; control flow, file input and output functions			
	Programming with C++			
П	C++- flow control-conditional statements- iterative statements-switch statements- conditional operators as an alternative to IF- nested loops-break statements-ext() functions- structured data types-arrays-storage classes- multidimensional arrays-sorting of strings- functions-built in and user defined- accessing function and passing arguments to functions- calling functions with arrays-scope rule for functions and variables-structures in C++-classes abd objects – definition- class declaration-class function definitions-creating objects-use of pointers in the place of arrays-file handling in C++-basic file operations-serial and sequential files-reading and writing on to disks.	36	CO3	CL3; CL4; CL6
	Numerical Techniques			
Ш	Solution of simultaneous linear algebraic equations-Gauss elimination method-Gauss 26 Jordan method-inverse of a matric using Gauss elimination method-Finite differences forward and backward differences-central differences- difference of a polynomial-error propagation in difference table-Interpolation with equal intervals-Gregory Newton forward and backward formula- error in polynomial interpolation-central difference interpolation formula-Gauss's forward and backward formula- Striling's formula Lagrange interpolation formula-numerical differentiation-numerical integration using general quadrature formula-Trapezoidal rile- Simsons 1/3 and 1/8 rules-numerical solutions to ordinary differential equations-Euler and modified Euler methods-Runge Kutta methods- numerical solution to partial differential equations-solutions to Poisson and Laplace equations	36	CO4	CL2; CL3; CL4; CL5; CL6
III	Solution of simultaneous linear algebraic equations-Gauss elimination method-Gauss 26 Jordan method-inverse of a matric using Gauss elimination method-Finite differences forward and backward differences-central differences- difference of a polynomial-error propagation in difference table-Interpolation with equal intervals-Gregory Newton forward and backward formula- error in polynomial interpolation-central difference interpolation formula-Gauss's forward and backward formula- Striling's formula Lagrange interpolation formula-numerical differentiation-numerical integration using general quadrature formula-Trapezoidal rile- Simsons 1/3 and 1/8 rules-numerical solutions to ordinary differential equations-Euler and modified Euler methods-Runge Kutta methods- numerical solution to partial differential equations-solutions to Poisson and Laplace equations	36	CO4	CL2; CL3; CL4; CL5; CL6

2. V.N. Vedamurty and N. Iyengar, Numerical Methods ,Vikas Publishing Pvt Ltd (1998)

3. K. Udayakumar, and B.S. Umasankar, The 8085 microprocessor ,Dorling Kindersley (India) Pvt Ltd (2008)

4. Christian Hill, Learning Scientific Programming with Python , Cambridge University Press (2015)

5. V. Carl Hamacher, Z.G.Vranesic and S.G. Zaky, Computer Organization , Fourth Edition, McGraw Hill International Edition (1996)

6. Peter Norton etal., Beginning Python, Wiley Publishing (2005)

7. Abishek Yadav, Microprocessor 8085 8086 ,University Science Press, New Delhi (2008)

8. D.Ravichandran, Programming in C++ ,Tata McGraw Hill (2011)

9. M.T.Somasekhara, Programming in C++, PHI Pvt Publishing (2005).

10. B. Ram, Fundamentals of Microprocessors and Microcontrollers, Dhanpat Rai Publications (2008).

11. S. S. Sastry, Introductory method of Numerical analysis, Fifth Edition, PHI (2012).

Books for Reference:

1. V. Rajaraman, Fundamentals of Computers, Fifth Edition, PHI (2010)

- 2. R.S.Gaonkar, Microprocessor-Architecture, Programming and Applications with 8085
- 3. S.S. Sastry, Introductory method of Numerical analysis, Fifth Edition, PHI
- 4. P. Ghosh, Numerical Methods with computer programs in C++,PHI learning Pvt Ltd

5. Bjorne Stroustrup, The C++ Programming Language ,Fourth Edition, Addison Wesley

Web Resources

- 1. https:nptel.ac.in/courses/108/103/108103157/
- 2. https://nptel.ac.in/courses/108/105/108105102/
- 3. https://onlinecourses.nptel.ac.in/noc22_ee12/preview
- 4. https:nptel.ac.in/courses/106/106/106106212/
- **5.** Python Tutorial Release 2.6.1 by Guido van Rossum, Fred L. Drake, Jr., editor. This Tutorial can be obtained from website ttp://www.altaway.com/resources/python/tutorial.pdf

COs	CO Description	Cognitive Level	PSO Addressed
CO1	Understand and identify different hardware components of a computer and operating systems	CL1; CL2	PSO1
CO2	Understand the internal architecture of microprocessor 8085 and create assembly language programs	CL1; CL2; CL6	PSO1; PSO2; PSO3
CO3	Understand the concepts of the programming languages of Python and C++ , develop programs and apply them to solve problems in Physics	CL3; CL4; CL6	PSO1; PSO2; PSO3; PSO4
CO4	Identify the suitability of different numerical methods and apply them to solve physical problems	CL2; CL3; CL4; CL5; CL6	PSO2; PSO4

Course Code	PH 251
Course Title	General Physics Practicals
Credits	
Hours/week	03
Category	Core Course (CC)-Practical
Semester	I & II
Regulation	2020

Course Overview

Demonstrate and understand various general physics experiments for acquiring fundamental concepts.

The importance of having hands-on experience to measure physical quantities and use practical methods to understand theoretical concepts.

Course Objective

XXX

Prerequisites	Basic knowledge of the usage of scientific apparatus	

Sl.No	Content	Hours	COs	Cognitive Level
01.	Determination of elastic constants by Cornu's method (elliptical and hyperbolic fringes)			
02.	Analysis of absorption spectra of liquids using spectrometer			
03.	Study of ultrasonic waves in liquids			
04.	Determination of e/k using Ge and Si transistors			
05.	Anderson Bridge –determination of self and mutual inductance			
06.	Michelson Interferometer experiments			
07.	Identification of Fraunhofer lines in solar spectra			
08.	Verification of Richardson's equation using diode valve		CO1; CO2;	CL1; CL2;
09.	LED experiments (a) wavelength determination (b) I-V characteristics (c) output power variations with applied voltage etc	03	CO3; CO4; CO5	CL3; CL4; CL5; CL6
10.	Thermal diffusivity of brass			
11.	BH curve-anchor ring			

10				
12.	Study of photoelectric effect and determination of of Planak's constant			
13	Determination of Stefan's constant			
13.	Experiments using Laser: (a) Laser beam			
17.	characteristics (b) Diffraction grating (c)			
	Diffraction at different types of slits and			
	apertures (d) refractive index of liquids (e)			
	particle size determination			
15.	Young's modulus of different materials			
	using strain gauge			
16.	Determination of magnetic force in a			
	current carrying conductor			
17.	Optical fibre characteristics – numerical			
	aperture, attenuation and bandwidth of			
	given specimen.			
18.	Variation of dielectric constant with			
10	temperature of ferroelectric material.			
19.	Dielectric constant of non-polar liquid.			
20.	Cauchy's constants of liquids and liquid			
	spectrometer			
21	Surface tension of a liquid using larger's			
21.	method			
22.	Experiments using Phoenix Kit (a)			
	Capacitor charging/discharging			
	experiments (b) Dielectric constant of glass			
Refere	ences			
1. B	L. Worsnop and H.T. Flint - Advanced Practical Ph	nysics for stu	dents - Meth	usen & Co (1950)
2. E	V. Smith - Manual of experiments in applied Phys	sics - Buttery	vorth (1970)	
3. R	A. Dunlap - Experimental Physics - Modern meth	ods - Oxford	University I	Press (1988)
4. D	. Malacara (ed) - Methods of experimental Physics	s - series of v	olumes - Ac	adefine Press file
5. S.	P. Singh – Advanced Practical Physics – Vol I & I	I – Pragati Pi	akasan, Mee	erut (2003) – 13th
Edit	ion	0	,	
6. A	A.C. Melissinos and J.Napolitano, Experiments in I	Modern Phys	sics, Academ	ic Press, 2003
7. K	Muraleedhara Varier, A Practical Approach to N	Juclear Phys	ics, Narosa I	Publishing House
Books	o) for Reference:			
DOORS	v			
	Δ			
Web R	Resources			
1.	https://vlab.amrita.edu/?sub=1&brch=282≃	=1005&cnt=	1	
2.	https://vlab.amrita.edu/?sub=1&brch=282≃	=1512&cnt=	<u>1</u>	
3.	https://vlab.amrita.edu/?sub=3&brch=45∼=	539&cnt=90	<u>0</u>	
4.	https://vlab.amrita.edu/?sub=1&brch=282∼	=1507&cnt=	1	
5.	https://vlab.amrita.edu/?sub=1&brch=282∼	<u>=879&cnt=1</u>		
6.	http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlab	iitkgpAE/exp	2/index.htm	I
7.	https://he-coep.vlabs.ac.in/Experiment6/index1	html 8. http	s://	
L	· · · ·	•		

8. python-iitk.vlabs.ac.in/exp/arithmetic-operations/simulation.html

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To measure and analyze various physical quantities for determining a material's physical property.	CL1, CL3, CL4
CO2	Interpret and analyze the obtained result and sketch the variations wherever required	CL3, CL4
CO3	To calculate error in various general physics experiments and to get an idea about accuracy in calculations	CL4
CO4	To develop experimental skills	CL4, CL5, CL6
CO5	To understand the complex theoretical concepts through experiments	CL1, CL2, CL3, CL4

Note :

1. All the experiments should involve error analysis. Internal evaluation to be done in the respective semesters and grades to be intimated to the controller at the end of each semester itself. Practical observation book to be submitted to the examiners at the time of examination.

2. Total of 10 experiments to be done from 22

3. At least 5 experiments are to be done by a student from Sl.No 1 to 10 and 2 experiments from Sl.No 11 to 22 4. The PHOENIX/EXPEYES Experimental Kit developed at the Inter University Accelerator Centre, New Delhi, may be used for the experiments wherever possible

Course Code	PH 252
Course Title	Electronics and Computer Science Practicals
Credits	
Hours/week	03
Category	Core Course (CC)-Practical
Semester	I & II
Regulation	2020
Course Overviev	W
Demonstrate and	understand various general physics experiments for acquiring fundamental

The importance of having hands-on experience to measure physical quantities and use practical methods to understand theoretical concepts.

Course Objective

Design, construct and verify various electronics circuits

Develop programs to solve numerical method problems using C++ programming language.PrerequisitesBasic knowledge of the usage of scientific apparatus

Sl.No	Content	Hours	COs	Cognitive Level
01.	Single stage CE amplifier –Design and study of frequency response			
02.	Study of RC Phase shift oscillator circuits using Transistors			
03.	Construction and study of astable multivibrator and VCO circuits using Transistors			
04.	Study of OP Amp circuits (a) summing amplifier (b)difference amplifier			
05.	OP Amp as an integrator and differentiator			
06.	Characteristics of JFET and MOSFET			
07.	Characteristics of SCR			
08.	Design and study of negative feedback amplifier circuits			
09.	Study of Clipping and Clamping circuits		COL	CI 1
10.	UJT Characteristics and UJT relaxation Oscillator		CO1,	CL1, CL2
11.	Emitter follower and source follower circuits		CO2, $CO3$ ·	CL2, CL3
12.	Weinberg oscillator using OP Amp	04	CO4:	CL3;
13.	SR and JK Flip Flops -construction using Logic		CO5:	CL5:
	Gates and study of truth tables		CO6	CL6
14.	Study of the frequency response of a tuned amplifier			
15.	Study of power amplifier circuits			
16.	Frequency multiplier using PLL			

17.	Study of Schmitt trigger circuits using transistors				
18.	Construction and study of cascade amplifier				
	circuit using transistors.				
19.	Simple electronics experiments using Phoenix and				
	Python based Kits.				
20.	Least square fitting				
21.	First derivative of tabulated function by difference				
	table				
22.	Numerical integration (Trapezoidal rule and				
	Simpson method)				
23.	Solution of algebraic and transcendental equations				
	using Newton-Ralphson method				
24.	Solution of algebraic equations using bisection				
	method				
25.	Numerical interpolation using Newton and				
- 26	Lagrangian methods				
26.	Monte Carlo simulation				
27.	Evaluation of Bessel and Legendre functions				
28.	Matrix addition, multiplication, trace, transpose				
20	and inverse.				
<u> </u>	Fourier series analysis				
30.	Study of motion of projectile in a central force				
21	Study of Dianatary motion and Konlar's laws				
Defero	study of Flanetary motion and Repier's laws				
1 R	ILCS	or student	s - Methus	en & Co (195)	0)
1. D. 2. E.	V. Smith - Manual of experiments in applied Physics - B	utterworth	s - Methus 1 (1970)	en a co (175	0)
3. R.	A. Dunlap - Experimental Physics - Modern methods - C	xford Un	iversity P	ress (1988)	
4. D.	Malacara (ed) - Methods of experimental Physics - serie	s of volu	nes - Áca	demic Press I	nc
(198	8)				
5. S.	P. Singh – Advanced Practical Physics – Vol I & II – Prag	ati Prakas	san, Meer	ut (2003) - 13	th
Editi	on C. Maliasings and I. Napolitano, Experiments in Modern	Dhusios	Aaadami	Draga 2002	
0.A 7 K	Muraleedhara Varier A Practical Approach to Nuclear	Physics,	Narosa Pr	blishing Hou	Se
(201	8)	1 Hysics, 1	varosa i t	ionsning 110u	30
Books	for Reference:				
Web R	esources				
1.	Basic Electronics and Lab Video Prof. T.S. Nataraian IIT N	Aadras			
	http://nptel.iitm.ac.in/video.php?subjectId=122106025				
2.	https://vlab.amrita.edu/?sub=1&brch=282∼=10058	cnt=1			
 3	https://vlab.amrita.edu/?sub=1&brch=282∼=15128	cnt=1			
л. Л.	https:///lab.amrita.edu/?cub=28.hrsh= 15226				
ч.	111123.// viab.amma.cuu/: 500-500101-4505111-559001	1-300			

- 5. https://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=1
- 6. <u>https://vlab.amrita.edu/?sub=1&brch=282&sim=879&cnt=1</u>
- 7. http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAE/exp2/index.html
- 8. https://he-coep.vlabs.ac.in/Experiment6/index1.html 8. https://

9. python-iitk.vlabs.ac.in/exp/arithmetic-operations/simulation.html

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	Design and construct various electronic circuits and its validation.	CL1; CL2; CL3; CL6
CO2	Analyse the errors in various electronics experiments.	CL4; CL5
CO3	Develop and execute programs using C++	CL2; CL3; CL5; CL6

Note :

1. All the experiments should involve error analysis. Internal evaluation to be done in the respective semesters and grades to be intimated to the controller at the end of each semester itself. Practical observation book to be submitted to the examiners at the time of examination.

2. Total of 10 experiments to be done from 22

3. At least 5 experiments are to be done by a student from Sl.No 1 to 10, 3 experiments from Sl.No 11 to 19 and 8 experiments from Sl.No 20 to 31

4. The PHOENIX/EXPEYES Experimental Kit developed at the Inter University Accelerator Centre, New Delhi, may be used for the experiments wherever possible

Course Code	PH 231		

Course Title	Advanced Quantum Mechanics				
Credits					
Hours/week	06				
Category	Core Course (CC)-Theory				
Semester	III				
Regulation	2020				
Course Overviev	V				
 This cours methods to To give an Quantum r An extensi methods to An introdu 	e describes a thorough conceptual understanding of different approximation perturbed systems. outline of the study of perturbed system from microscopic point of view. nechanical description of scattering and their applications on of quantum mechanics to a system of particles and theories of approximation many body problems.				
6 Extensive	use of abstract operator algebra to learn about angular momentum and its				
importance					
Course Objecti	ve				
1. To solve ti	me independent perturbed systems using various methods and give an account of				
2. To calcula different ty	atomic spectral lines an estimate of ground state energy of simple systems te the transition probabilities and set selection rules for spectral transition for pes of time dependent perturbation.				
3. To solve the splitting of	3. To solve time independent perturbed systems using various methods and give an account of splitting of atomic spectral lines an estimate of ground state energy of simple system.				
4. To provide	a formulation for scattering phenomena and correlate it with experimental results				
5. To constru conservation	on laws associated with different symmetries.				
6. To introduce approximation methods for solving many body problem.					
7. To understand and appreciate the commutative and non-commutative algebra in the speci					
context of angular momentum in general.					
8. To construct and solve Dirac equation for a free particle and particle in a central potential.					
Prerequisites	• A thorough understanding of mechanics.				
	• Knowledge of partial differential equation and variable separable method				

Unit	Content	Hours	COs	Cognitive Level
	Variation Method			
	The variational principle-Rayleigh Ritz method- variation method for excited states-ground state of Helium and Deutron.			
	WKB Approximation			
	WKB method-connection formulas-barrier potential-			

	penetration-alpha particle emission-bound states in a potential well			
	Time dependent and time-independent perturbation theory		CO1;	CL1; CL2;
I	Time independent perturbation- basic concepts- non- degenerate energy levels- anharmonic oscillator ground state of helium- effect of electric field on the ground state of hydrogen- degenerate energy levels- effect of electric field on the n=2 state of hydrogen- spin-orbit interaction. Time dependent perturbation- first order, harmonic, transition to continuous states, absorption and emission of radiation- Einstein's coefficients- selection rules.	36		CL3; CL4; CL5; CL6
	Symmetry and Conservation Laws			
	Symmetry transformations-space translation and conservation of angular momentum-time translation and conservation of energy-rotation in space and conservation of angular momentum-space inversion- time reversal		CO2; 36	CL1; CL2; CL3; CL4; CL5; CL6
	Quantum Theory of Scattering			
II	Scattering cross section and scattering amplitude- partial wave analysis and scattering by a central potential-scattering by attractive square well potential- scattering length-expression for phase shifts-Born approximation-scattering by Coulomb potential- Laboratory and centre of mass coordinate transformations.	36		
	System of identical particles			
	Identical particles- Pauli's exclusion principle- inclusion of spin-spin function for a two electron system-Helium atom-central field approximation- Thomas Fermi model of an atom-Hartree and Hartree- Fock equations.			
	Angular Momentum			
ш	Angular momentum in operators and commutation relations-eigen values and eigen functions of L 2 and Lz –general angular momentum-eigen values of J2 and Jz-angular momentum matrices- 28 spin angular momentum –spin vectors for a spin ½ system-addition of angular momentum Clebsch-Gordan coefficients.		CO3; CO4;	CL1; CL2; CL3; CL4; CL5;
	Relativistic Quantum Mechanics	36		
	Klein-Gordon equations and its relevance-particle in a Coulomb's field-Dirac's relativistic theory-Dirac's equation for a free particle-Dirac matrices-covariant form of Dirac's equations probability density-plane wave solutions-negative energy starts-spin in Dirac's theory-magnetic moment of an electron-relativistic corrections of Hydrogen atom spectrum-spin orbit correction Lamb shift			CL6
III Book for	Jz-angular momentum matrices- 28 spin angular momentum –spin vectors for a spin ½ system-addition of angular momentum Clebsch-Gordan coefficients. Relativistic Quantum Mechanics Klein-Gordon equations and its relevance-particle in a Coulomb's field-Dirac's relativistic theory-Dirac's equation for a free particle-Dirac matrices-covariant form of Dirac's equations probability density-plane wave solutions-negative energy starts-spin in Dirac's theory-magnetic moment of an electron-relativistic corrections of Hydrogen atom spectrum-spin orbit correction Lamb shift Study	36	CO3; CO4;	CL CL CL CL CL

- 1. G.Aruldas, Quantum Mechanics ,Second Edition, PHI learning Pvt Ltd (2009)
- 2. D.J.Griffiths, Indroducion to Quanum Mechanics, Second Edition, Pearson Education Inc (2005)

3. J.J.Sakurai, Advamced Quantum Mechanics, Pearson Education Inc (2009)

Books for Reference:

- 1. P.M.Mathews and K.Venkitesan, A Text Book of Quantum Mechanics, Tata McGraw Hill (2010)
- 2. A.Ghatak and S.Lokanathan ,Quantum Mechancis Theory and Applications, Kluwer Academic Publishers (2004)
- 3. V.K.Thankappan,Quantum Mechancics, Second Edition, New Age International Pvt Ltd (2003)
- 4. S.Devanarayanan, Quantum Mechanics, Sci Tech Publications (India) Pvt Ltd (2005)
- 5. L.H.Ryder, Quantum Field Theory Second Edition, Cambridge University Presss (1996)
- 6. Steven Weinberg, Quantum Theory of Fields (in Three Volumes), Cambridge University Presss (2002)
- 7. Quantum Mechanics (Schaum's Outline) :YoavPelegetal. Tata McGraw Hill Private Limited, 2/e.
- 8. Quantum Mechanics: 500 Problems with Solutions: G Aruldhas, Prentice Hall of India.

Web Resources

- 1. https://archive.nptel.ac.in/courses/115/101/115101107/
- 2. https://www.digimat.in/nptel/courses/video/115102023/L01.html
- 3. https://www.digimat.in/nptel/courses/video/115106066/L39.html
- 4. https://www.digimat.in/nptel/courses/video/115106065/L25.html
- 5. https://www.digimat.in/nptel/courses/video/115108074/L01.html
- 6. https://www.digimat.in/nptel/courses/video/104101124/L01.html
- 7. www.nptel/videos.in/2012/11/quantum-physics.html
- 8. https://nptel.ac.in/courses/115106066/

COs	CO Description	Cognitive Level
CO1	Choose appropriate approximation methods to evaluate the energy corrections in perturbed systems.	CL1; CL2; CL3; CL4; CL5; CL6
CO2	Devise theoretical methods to explain scattering phenomena and compare with experimental results.	CL1; CL2; CL3; CL4; CL5; CL6
CO3	Employ the concept of commutative and non-commutative algebra in explaining orbital and spin angular momentum.	CL1; CL2; CL3; CL4; CL5; CL6
CO4	Infer the requirements of relativistic quantum mechanics.	CL1; CL2; CL3; CL4; CL5; CL6

Course Code	PH 232				
Course Title	Atomic and Molecular Spectroscopy				
Credits					
Hours/week	06				
Category	Core Course (CC)-Theory				
Semester	III				
Regulation	2020				
Course Overview					
 This course focuses on the fundamentals of rotational, infrared, Raman, electronic and NMI spectroscopic analysis. This course helps the students to understand the working principles of spectroscopic instruments like FTIR, NMR, Mossbauer and other spectrometers. In this course students learn to analyze the spectroscopic fingerprints and interpret them for chemical analysis. Resonance spectroscopic techniques (ESR and NMR) will be discussed in detail. This course demonstrates applications like atomic, nuclear and molecular structural analysis of various materials 					
Course Objective					
1. To underst 2. To know t	 1. 10 understand the vibrational and rotational spectroscopic principles. 2. To know the fundamentals of FTIR NMR techniques. 				
3. To use spe	 To use spectroscopic instruments like FTIR for analyzing the samples. 				
4. To underst	and the theory of electronic spectroscopy and ESR instrumentation.				
5. To explain	• To explain the theory of Mossbauer spectroscopy, instrumentation and interpretation				

Prerequisites	•	Basic knowledge in electromagnetic radiations
---------------	---	---

Unit	Content	Hours	COs	Cognitive Level
	Atomic Spectroscopy			
	Spectra of Atoms - Spectroscopic terms- selection rules- exchange symmetry of wave functions- Pauli's exclusion principle. Many electron atoms- Building principle- the spectra of Li and hydrogen like elements, The L-S and j-j coupling schemes- total angular momentum - term symbols- The spectra of Helium-Zeeman			
I	effect – The magnetic moment of atom, Lande's g factor- The normal Zeeman effect- Emitted frequencies in anomalous Zeeman transitions- Nuclear spin and Hyperfine structure, Stark Effect, Paschen Bach effect	36	CO2	CL1; CL4;
	Molecular Symmetry			
------------	--	----	------	----------------------
	Symmetry operations-symmetry elements- algebra of symmetry operations-multiplication tables matrix representation of symmetry operators-molecular point groups-reducible and irreducible representations-great orthogonality theorem-character tables for C 2V and C3V point groups, symmetry species of point groups-IR and Raman activity			
	Photoelectron and Photo-acoustic			
	SpectroscopyPhotoelectronspectroscopy-experimentalmethods-photoelectronspectraandtheirinterpretation-AugerelectronandXrayFluorescencespectroscopy-Photo-acousticbasictheory-experimentalarrangement-applications.			
	Molecular Rotational Spectroscopy			
TT	Classification of molecules-rotational spectra of diatomic molecules-isotope effect and intensity of rotational lines-non rigid rotator-linear polyatomic molecules-symmetric and asymmetric top molecules-microwave spectrometer-analysis of rotational spectra.		CO1:	CL1:
11	IR Spectroscopy		,	CL2;
	Vibrational spectra of diatomic molecules- characteristic IR spectra-vibrations of polyatomic molecules- anharmonicity- Fermi resonance- hydrogen bonding-normal modes of vibration in a crystal- interpretation of vibrational spectra- IR spectrometer- Fourier transform IR spectroscopy	36		CL4;
	Electronic Spectra of Molecules			
	Vibrational coarse structure and analysis of bound systems- Deslanders table-Frank-Condon principle-vibrational electronic spectra-rotational fine structure- Fortrat parabola-electronic angular momentum in diatomic molecules			
	Raman Spectroscopy			
	Theory of Raman scattering-rotational and vibrational Raman spectra-Raman spectrometer- structure determination using Raman and IR spectroscopy-nonlinear Raman effects-Hyper		COL	CL 1
	Raman effect stimulated Raman scattering- coherent anti-stokes Raman scattering		CO3	CL1; CL2; CL3:
TTT	ESR and NMR Spectroscopy	26	003,	CL3, CL4;
111	Principle of NMR-ESR spectrometer-Hyperfine	30	CO6	

structure-ESR spectra of Free ra properties of nuclei-resonance instrumentation-chemical shift-I solids-NMR imaging-interpreta	dicals Magnetic condition-NMR MR spectra of tion of NMR 8 hours)			
Recoilless emission and absor spectrometer-experimental tech shift- quadrupole interaction-ma interaction	a nours) ation-Mossbauer niques isomer gnetic hyperfine			
Book for Study				

1. J.M. Hollas, Modern Spectroscopy , Fourth Edition, John Wiley & Sons (2004)

2. G. Aruldas, Molecular Structure and Spectroscopy , PHI learning Pvt Ltd (2007)

3. Suresh Chandra, Molecular Spectroscopy, Narosa Publishing Co (2009)

4. H E White, Introduction to Atomic Spectroscopy McGraw-Hill Inc. 1st Edition. (1934).

Books for Reference:

1. C.N. Banwell and E.M. McCash, Fundamentals of Molecular Spectroscopy, Fourth edition, Tata McGraw Hill (1995).

2. D.N. Satyanarayana, Vibrational spectroscopy-Theory and applications, New Age International Pvt Ltd (2004)

3. J.L.McHale, Molecular Spectroscopy, Pearson education Inc (2008).

Web Resources

1. JLExp13.pdf (mit.edu)

2. https://nptel.ac.in/courses/115101003

3. B-2 Mossbauer Spectroscopy - Physics 191r (harvard.edu)

COs	CO Description	Cognitive Level	PSOs addressed
CO1	Understand and explain the fundamental concepts and applications of microwave, IR, Raman and other spectroscopic methods.	CL1,CL2,CL 4	PSO1,PSO3
CO2	Understand the importance and principles of molecular symmetry. Attain basic ideas d atomic spectroscopy.	CL1,CL4	PSO1
CO3	Analyze the NMR and FTIR spectra of various samples and identify their chemical structure.Make use of electronic spectroscopy for chemical analysis.	CL4,CL3	PSO4, PS05
CO4	Choose suitable spectroscopic technique and examine the chemical composition of a material.	CL4,CL5,CL 1	PSO4,PSO5

CO5	Apply the	knowledge	acq	uired	and	use	CL5,CL3	PSO3, PSO5
	spectroscopic materials.	instruments	to	exam	ine	new		

Course Code	PH 233M					
Course Title	Materials Science –I					
Credits						
Hours/week	06					
Category	Elective Course (CC)-Theory					
Semester	III					
Regulation	2020					
Course Overview						
To underst growth tec	To understand and familiarize fundamentals of materials, structure and its imperfections, growth techniques and associated nucleation theories.					
Course Objectiv	Course Objective					
XX						
Prerequisites	Basic knowledge in electromagnetic radiations					

Unit	Content	Hours	COs	Cognitive Level
	Classification of Materials, Functional Classification of Materials			
Ι	Size effects on the optical, electrical, magnetic and mechanical properties. Size effects on the optical properties of semiconductor nanostructures, weak excitonic confinement, strong excitonic confinement. Materials for Aerospace, Biomedical, Electronic, Energy technology, Environmental technology, Magnetic, Photonic and Structural Applications- Smart materials. Structural classification of Materials- Crystalline-Single crystals- polycrystalline materials Grains and grain	36	CO1; CO2; CO3; CO4; CO5;	CL1; CL2; CL3; CL4; CL5;

	boundaries.		CO6	CL6
	Crystal Structures of Ionic Materials			
	Cesium chloride, Fluorite, Perovskite and Corundum type structures-Covalent structures. Imperfections in crystals			
	Types of Imperfections in Crystals			
	Point defects-Interstitial defects-Substitutional defects Frenkel and Schottky defects-Line Kronger-Vink notation for defect chemical reaction Dislocations and Diffusion in crystals - Dislocations- Burgers vectors – edge and screw dislocations –slip-significance of dislocations- Schmid's law-Surface defects-Domain boundaries- Importance of defects –Diffusion - Applications of Diffusion-Stability of atoms and ions-Mechanism for diffusion-Activation energy for diffusion- Permeability of polymers Composition profile-Diffusion and materials processing			
	Formation of Crystalline Materials			
п	Ambient phase equilibrium – Super saturation – Equilibrium of finite phases - Equation of Thomson- Gibbs – Types of nucleation – Formation of critical nucleus – Classical theory of nucleation – Homo and heterogeneous formation of 3D nuclei – Rate of nucleation – Growth from vapor phase, solutions and melts – Epitaxial growth – Growth mechanism and classification – Kinetics of growth of epitaxial films – Mechanisms and controls for nanostructures in 0 and 1 dimensions.	36	CO1; CO2; CO3; CO4; CO5;	CL1; CL2; CL3; CL4; CL5;
	Crystallization Principles and Growth		000	CL0
	TechniquesClasses of crystal system – Crystal symmetry – Solvents and solutions – Solubility diagram – Super solubility – Expression for super saturation – Metastable zone and induction period – Miers TC diagram – Solution growth – Low and high temperatures solution growth – Slow cooling and solvent evaporation methods – Constant temperature bath as a crystallizer.Gel, Melt and Vapor Growth Techniques Principle of gel technique – Various types of gel – Structure and importance of gel – Methods of gel growth and advantages Melt technique – Czochralski growth – Floating zone – Bridgeman			

	growth – Hydrothermal growth – Vapor-phase growth – Physical vapor deposition – Chemical vapor deposition – Stoichiometry.				
	Thin Film Physics				
ш	Film Preparations : Vacuum evaporation - Evaporation theory - Rate of evaporation - Hertz- Kundsen equation - Free evaporation and effusion - Evaporation mechanisms - Directionality of evaporating molecules - vapour sources - wire and metal foils - Electron bean gun - flash evaporation - sputtering - Glow discharge sputtering - Bias sputtering - Reactive sputtering - Triode sputtering - Magnetron sputtering - Ion beam sputtering - Pulsed laser deposition - Molecular beam epitaxy- Chemical methods - Thermal CVD - Plasma enhanced CVD - Spray Pyrolysis - Sol Gel method - Spin and Dip coating - Electro plating and Electroless plating - Deposition mechanisms.	36	CO1; CO2; CO3; CO4; CO5; CO6	CL1; CL2; CL3; CL4; CL5; CL6	
	Nucleation Theories				
	Condensation process - Theories of Nucleation – Capillarity theory – Atomistic theory – Comparison – stages of film growth – Incorporation of defects during growth - Film thickness measurements - Optical methods – Ellipsometry				
<mark>Book fo</mark>	r Study				
 S.V. Gaponenko, Optical properties of semiconducting nanocrystals, Cambridge University Press (1997) A. K. Bandhyopadhyay, Nanomaterials, New Age International Publishers (2007) Solid State Physics, A.J.Dekker, Macmillan, (1967). The Science and Engineering of Materials: Donald R Askeland and Pradeep P Phule 6 Edition- Thomson Brooks/Cole. I.V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth andEpitaxy (2004) 2nd edition. P. Santhanaragavan and P. Ramasamy, Crystal Growth Process and Methods (KRU Publications, Kumbakonam, 2001). A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008). Maissel and Glang, Hand Book of Thin Film Technology K.L. Choppra, Thin Film Phenomena Dupy and Kachard, Physics of Non-Metallic Thin Films T. Pradeep: NANO: The Essentials: Understanding Nanoscience and Nanotechnology, McGraw- Hill Educatio 					
Books	for Reference:	/			
1	 Materials science and engineering- Vth Edn- V Raghavan(PHI) Material science by S.L.Kakani & Amit Kakani, 2nd edition 2010, reprint 2011 				

- 3. Material Science & Engineering, R.K. Rajput (Jain Book Agency)
- 4. Material Science and Engineering, I. P. Singh, & Subhash Chander (Jain Book Agency)

Web Resources

- 1. https://archive.nptel.ac.in/courses/112/106/112106293/
- 2. https://archive.nptel.ac.in/courses/113/104/113104075/
- 3. https://archive.nptel.ac.in/courses/113/102/113102080/
- 4. https://nptel.ac.in/courses/113104075

COs	CO Description	Cognitive
		Level
CO1	To identify and distinguish various crystal structures and the	CL1; CL2; CL3;
	associated imperfections.	CL4; CL5; CL6
CO2	To prepare and demonstrate the synthesis of crystalline materials by	CL1; CL2; CL3;
	different growth techniques.	CL4; CL5; CL6
CO3	To demonstrate different methods for growth of thin films.	CL1; CL2; CL3;
		CL4; CL5; CL6
CO4	To discuss various nucleation theories of film growth and analyze	CL1; CL2; CL3;
	the synthesized thin films	CL4; CL5; CL6
CO5		CL1; CL2; CL3;
		CL4; CL5; CL6

PH 241
Condensed Matter Physics
06
Main Course (CC)-Theory
IV
2020
introduction to the various symmetries in 3-dimension crystalline materials, their sification and experimental method of determining crystal structure will be given. the theoretical models involving lattice contribution to the study of elastic and rmal properties of the materials will be dealt. the dynamics of the collective electrons behavior in explaining the transport and ectric phenomena will be discussed in detail. detailed discussion will be on the theoretical principles behind the origin of gnetism and classification and properties of magnetic materials. the microscopic physics behind the novel phenomena of superconductivity and beiated properties, and an insight into the high temperature superconductivity will discussed. introduce the synthesis and characterization techniques of nanomaterials.
re
b understand the various crystal structures, the microscopic theory behind the ffraction technique. In distinguish materials as metals, semiconductor and insulator using band structure and study their transport phenomena. In provide theoretical and experimental means of determining the Fermi surface an

4. To study the theories of different types of magnetism and dielectrics			
5.	To learn the theories supporting superconducting phenomenon and its applications.		
Prerequisites	• Basic knowledge in electromagnetic radiations		

Unit	Content	Hours	COs	Cognitive
	Crystal physics Lattice points and space lattice-basis and crystal structure-unit cells and lattice parameters symmetry elements in crystals –space groups-Bravais lattice- density and lattice constant relation-crystal directions, planes and Miller indices-reciprocal lattice-allotropy and polymorphism in crystals- imperfections in crystals. Lattice vibrations and thermal properties Dynamics of identical atoms in crystal lattice- dynamics of linear chain-experimental		CO1; CO4	Level CL1; CL 3:
I	measurement of dispersion relation-anharmonicity and thermal expansion-specific heat of solids- classical model-Einstein's model-Debye model- thermal conductivity of solids-role of electrons and phonons-thermal resistance of solids. Free electron and band theory Electrons moving in one dimensional potential well-Fermi-Dirac statistics-effect of temparature on Fermi distribution-electronic specific heat- electrical conductivity of metals- Wiedmann- Franz- Lorentz law-electrical resistivity of metals- Hall effect-energy bands in solids-Kronig- Penny model-construction of Brillouin zones-nearly free electron model conductors, semiconductors and insulators-elementary ideas of Fermi surfaces	36		CL3; CL4; CL5; CL6
П	Semiconductors Free carrier concentration in semiconductors-mobility of charge carriers-temperature effects electrical conductivity of semiconductors-Hall effect in semiconductors – semiconductor junction properties. Dielectric and magnetic properties of materials Dipole moment-polarisation-local electric field in an atom-dielectric constant and its measurement- polarizability-classical theory-Peizo, Pyro and Ferro electric properties of Crystals-Ferreoelectric domains- classification of magnetic materials-atomic theory of magnetism- Langevin's theory-paramagnetism and quantum theory-Weiss molecular exchange field- ferromagnetic domains-anti ferromagnetism-Ferrites.	36	CO2; CO5	CL1; CL2; CL3; CL4; CL6
	Superconductivity			

III	Experimental attributes to superconductivity- critical temperature, critical current and critical magnetic field of superconductors-effects of magnetic field on superconductors-Type I and II superconductors-intermediate and vortex states- thermal conductivity, specific heat and energy gap in superconductors-microwave and IR properties- coherence length-Theories of superconductivity- London equations-Ginzberg-Landau theory-BCS theory-AC and DC Josephson effects in superconductors- Examples and properties of High Temperature Superconductors. Introduction to Nano Science and Technology Introduction to nanomaterials, properties, classification of nanomaterials, quantum confinement effects, Density of states-nano material preparation techniques-sputtering chemical vapor deposition-pulsed laser deposition- sol-gel technique-characterization of nano materials-X-Ray diffraction- Scanning Probe Microscopy-atomic force microscopy-SEM and TEM techniques-carbon nano structures-elements of nano electronics.	36	CO3; CO4; CO5	CL2; CL3; CL4; CL5; CL6			
Book fo	r Study NW Asheroft and ND Marwin Solid State Dhysi a Cas	no go Loor	ning India (2001)			
1.	Charles C Kittel Introduction to Solid State Physic Cse	nage Lear sy Studen	t Edition (2)	2001) 007)			
2.	Charles C. Kittel, Introduction to Solid State Phy, Whiclesy Student Edition (2007) M. Ali Omar, Elementary Solid State Phy. Spiecastron Education Inc. (1999)						
3.	K.K. Chattopahyay, A.N. Baneriee. Introduction to Nano Science and NanoTechnolo g						
	Pyrentice Hall of India (2009)						
4.	Gabor L Hornyak, H F Tibbals and Joydeep Dutta, I	Introductio	on to Nanc	science and			
	Nanotechnology, CRC press (2009)						
Books	for Reference:						
1.	S.O. Pillai, Solid State Physi, c Tshird Edition New Age Ir	nternationa	al Pvt. Ltd (1999).			
2.	M.A. Wahab, Solid State Physi,c Nsarosa Publishing Hou	se (1999).					
3.	R.J. Singh, Solid State Physics, Dorling Kindersley (India) Pvt Ltd	(2012).				
4.	P. Phillips, Advanced Solid State Physics, Second Edn, Ca	ambridge	University I	Press (2012).			
Web F	lesources						
1.	Solid State Physics - NPTEL Online Courses, Prof. A	mal Kum	ar, IIT Kha	ragpur Das,			
	https://nptel.ac.in/courses/115105099						
2.	A brief course on Superconductivity- NPTL Online	Course, 1	Dr. Saurabl	h Basu, IIT			
2	Guwahati, <u>https://nptel.ac.in/courses/115103108</u>		.	- C A 1			
3.	Concepts in Magnetism and Superconductivity-NPTL	Online (Course , P	rot. Arghya			
4	Taraphuer, III Knaragpur, <u>nttps://onlinecourses.nptel.ac</u>	<u>U.III/IIOC22</u> Drathan I	<u>pno1/prev</u>	<u>IEW</u> IT Madrae			
4.	https://onlinecourses.pptel.ac.in/noc19_mm21/preview	ramap r	1010055, 1	11 Iviaulas,			

Course Outco	ome (Cos) and	l Cognitive Level	l Mapping
---------------------	---------------	-------------------	-----------

COs	CO Description	Cognitive Level
CO1	Discuss the properties of crystals, fundamentals of lattice vibrations and to formulate models to explain solid characteristics.	CL1; CL4; CL5; CL6
CO2	Explain the theoretical concepts of semiconductors, dielectric, magnetic and superconducting materials.	CL1; CL2; CL3
CO3	To describe the synthesis and characterization techniques of nanomaterials.	CL2; CL3
CO4	To apply the concepts in condensed matter physics to meet the challenges in day-to-day situations.	CL3; CL5; CL6
CO5	To find the applications of advanced functional materials in industries.	CL2; CL4; CL6

Course Code	PH 242					
Course Title	Nuclear and Particle Physics					
Credits						
Hours/week	06					
Category	Elective Course (CC)-Theory					
Semester	IV					
Regulation	2020					
Course Overview						
1. To familia	rize the fundamental properties of nucleus, its structure, models, nuclear					
reactions, 1	nuclear detectors and accelerators.					
2. To introdu	ce the concept of elementary particles and their interactions.					
Course Objectiv	e					
1. To acquire	knowledge on nuclear size, shape and forces like physical properties.					
2. To underst	and nuclear model and reactors					
3. To study n	uclear reactions and background concepts					
4. To underst	and radioactive concepts and theories					
5. To Explore and study elementary particles and their models						
Prerequisites	Basic knowledge in electromagnetic radiations					

Unit	Content	Hours	COs	Cognitive Level
I	Nuclear forces Deuteron-neutron –proton scattering and proton- proton scattering at low energies-non central forces- nuclear exchange force-meson theory of nuclear forces Nuclear models Detailed studies on liquid drop, shell and collective models of the nuclei. Nuclear reactions Conservation laws-energetic nuclear reactions-Q value equation-partial wave analysis of nuclear reaction cross section- compound nuclear hypothesis-resonance reactions-Brit-Wigner one level formula-optical model-theory of stripping reactions.	36	CO1; CO2	CL1; CL2; CL4;
П	Nuclear fission Mechanism of nuclear fission-calculation of critical energy based on liquid drop model-fission products and energy release-fission chain reactions-neutron cycle and four factor formula- general features and classification of nuclear fission reactors. Nuclear fusion Nuclear fusion in stellar interiors-proton-proton reactions-carbon-nitrogen cycle-thermo nuclear reactions in the laboratory-conditions for the construction of nuclear fusion reactor critical ignition temperature-Lawson criterian-plasma confinement in fusion- principles of pinch, magnetic an inertial confinement.	36	CO1; CO2;	CL1; CL2; CL3; CL4; CL5;
III	Nuclear detectors and particle accelerators Gas filled detectors-ionization chamber and proportional counters-GM counter-scintillation detectors-semiconductor detectors- Cerenkov detector-bubble chamber. Particle accelerators electrostatic accelerators-cyclotron accelerators- synchrotrons-linear accelerators-colliding beam accelerators. Elementary particle physics Elementary particle interactions-symmetries and conservation laws-quark model of elementary particles-colored quarks and gluons-ideas of charm, beauty and truth-quark dynamics-ideas of grand unified theories of fundamental forces	36	; CO3; CO4;	CL1; CL2; CL3; CL4; CL5;
Book fo	r Study			
1.	D.C. Tayal, Nuclear Physi,c5sthEdition,Himalaya Publis	hing Co (20	008)	

- 2. J. Verma, R.C.Bhandari, D.R.S.Somayajulu, Fundementals of Nuclear P,h yCsBicSs Publishers and Distributors (2005).
- 3. K.S. Krane, Introductory Nuclear Phy, s Wicsiley India Pvt. Ltd (1988)

Books for Reference:

- 1. 1 S.B. Patel, Nuclear Physics-An Introduction, New Age International Pvt. Ltd (1996).
- 2. B.R. Marhu, Nuclear and Particle Physics- an Introduction, Second Edition, Wiley (2012)
- 3. S.N. Ghoshal, Nuclear Physics, S. Chand Ltd (1997)
- 4. M.P. Khanna, Introduction to Particle Physics, PHI (2011)
- 5. J. Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press (2007)
- 6. 6. FF.Chen, Introduction to Plasma Physics, Springer, London (2002)

Web Resources

1. Nuclear Physics: Fundamentals and Applications, IIT Kanpur

Prof. H.C. Verma, https://archive.nptel.ac.in/courses/115/104/115104043/

2. Nuclear and Particle Physics Prof. Poulose Poulose, IIT Guwahati,

https://onlinecourses.nptel.ac.in/noc22_ph41/preview

COs		PSOs addressed						
CO1	To outlin	e and analyze nuclear properties, structure, models and resctions	CL1,CL2,CL4	PSO1				
CO2	To illustr	To illustrate the mechanisms of nuclear fission and fusion reactions CL1,CL4,CL5						
CO3	Discuss v	various nuclear detectors and particle accelerators.	CL5,CL3,CL2	PSO2, PSO3				
CO4	To classi	PSO5						
Course	Code	PH 243M						
Course								
Credits								
Hours/	Hours/week 06							
Catego	ry	Elective Course (CC)-Theory	ective Course (CC)-Theory					
Semest	er	III						
Regula	tion	2020						
Course	Overvi	ew						
Th of ele								
Course								
	XX							
Prerequ	uisites	• Basic knowledge in electromagnetic radiati	ons					

Unit	Content	Hours	COs	Cognitive Level
Ι	Optical and Thermal Properties Electronic materials and properties- Electrical conductivity-Conductivity of metals and alloys superconductivity- conduction in ionic materials- semiconductors-Insulators-dielectrics-polarisation in dielectrics-Photonic materials and properties- Electromagnetic Spectrum-Reflection, refraction, absorption and transmission-Selective absorption and transmission-Emission phenomenon luminescent and phosphorescent materials Optical Properties of Materials- Absorption, Photo conductivity, General consideration of Luminescence, excitation, absorption and emission processes of luminescence, configuration coordinate diagram, energy level diagram. Radiative and nonradiative processes. Different kinds of Luminescence-Electroluminescence, photoluminescence. Color centers, different kinds of color centers in the context of luminescence in alkali halides Electrostriction-piezoelectricity- Thermoelectric power- Seebeck effect, Peltier effect, and Thomson relation, figure of merit, Concept of phonon, Thermal conductivity due to phonons and electrons, conflicting thermoelectric properties.	36	CO1; CO2; CO3	CL1; CL2; CL3; CL4; CL5; CL6
Π	Nanostructured Materials and Properties Size and dimensionality effects - size effects - potential wells - partial confinement – conduction electrons and dimensionality – quantum well- quantum wires-quantum dots-Fermi gas and density of states - Carbon based nano-materials- Fullerenes-carbon nanotubes- nano shells- graphene biological and smart nanomaterials. Properties of nanomaterials - electrical-optical- mechanical and thermodynamical properties. Synthesis of nanomaterials- CVD-Sol-gel- Combustion hydrothermal- Colloidal growth- nanotube synthesis-Lithographic process-: Lithography, Nanolithography, split gate technology, self-assembly, limitation of lithographic process. Non lithographic techniques: Plasma arc discharge sputtering, evaporation Tools of nanomaterials	36	CO2; CO3; CO4;	CL1; CL2; CL3; CL4; CL5; CL6

Introduction to Nanoelectronics	
Properties dependent on density of states - excitons - single-electron tunnelling - applications infrared detectors - quantum dot lasers Introduction to Spintronics-History and overview of spin electronics; Classes of magnetic materials; Quantum Mechanics of spin; Spin relaxation mechanisms; spin relaxation in a quantum dots. Magneto resistance, Ordinary Magneto resistance, Giant Magneto resistance, Colossal Magnetoresistance, Micro-electromechanical systems (MEMSs) and Nano-electro-mechanical systems (NEMSs), Qualitative study only (Non evaluative) Resonant Tunnelling Diode, Quantum Cascade lasers, Single electron transistor -: Coulomb Blockade, single electron transistor, other SET and FET structures. Molecular Machines, Nano biometrics- Molecular and Nano-electronics- Microbial Fuel Cells-Hydrogen storage-Nano medicine-Biological applications-Photonic nanocrystals and integrated circuits-Quantum computers Introduction to Spintronics -: Spin Galvanic effect; Spin LEDs: Fundamental and applications, Spin photoelectronic devices, Electron spin filtering, Materials for spin electronics. Spin-Valve and spin-tunnelling devices: Read Heads, MRAMS, Field Sensors, Spintronic Biosensors, Spin transistors, Quantum Computing with spins.Bask for Study	L1; L2; L3; L4; L5; Ľ6
1. M.S. Ramachandra Rao, Shubra Singh, Nanoscience and Nanotechnolgy, Fundamer	ntals to

- 2. Thermoelectrics: Basic Principles and New Materials Development, by G.S. Nolas, J. Sharp,
- 3. H.J. Goldsmid, Springer, 2001
- 4. Introduction to Thermoelectricity, by H. Hulian Goldsmid, Springer, 2010
- 5. Nano The Essential-T Pradeep; Mc Graw Hill Education
- 6. The Science and Engineering of Materials: Donald R Askeland and Pradeep P Phule 6
- 7. Edition- Thomson Brooks/Cole.
- 8. Guozhong Cao Nano Structures and Nano materials, Synthesis Properties and Applications.
- 9. Principles of Electronic Materials and Devices , S.O.Kasap .Tata Mc Graw Hill
- 10. Crystallography and crystal defects, A. Kelley, G.W. Groves & P. Kidd, Wiley

- 11. Crystallography applied to Solid State Physics, A.R. Verma, O.N. Srivastava, NAI
- 12. Solid State Physics, A.J.Dekker, Macmillan, (1967).

Books for Reference:

- 1. Solid State Physics, S.L. Gupta and V.Kumar, Pragati Prakashan.
- 2. Introduction to Theory of Solids, H.M. Rosenberg, Prentice Hall.
- 3. Solid State Physics, J.S. Blakemore, W.B.Saunders & Co. Philadelphia.
- 4. Solid State Physics, N.W. Ashcroft & N.D. Mermin, Brooks/ Cole (1976).
- 5. Crystal Defects and Crystal Interfaces, W. Bollmann, Springer Verlag.
- 6. Elementary solid State physics M.Ali Omar-Pearson
- 7. Solid State Physics R.J.singh-Pearson
- 8. Introduction to Nanotechnology, Charles P. Poole, Jr. and Frank J.Owens, Wiley, (2003) 92
- 9. Nanotechnology An Introduction to Synthesis properties and Applications of
- 10. Nanomaterials: Thomas Varghese and K.M.Balakrishna-Atlantic Publishers.
- 11. MEMS/NEMS: micro electro mechanical systems/nano electro mechanical systems
- 12. Volume1, Design Methods, Cornelius T.Leondes, Springer, (2006).
- 13. 21. Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmons and Burkhard
- 14. Raguse "Nanotechnology", Overseas Press New Delhi (2005).
- 15. 22 W. R. Fahrner (Ed.) "Nanotechnology and Nanoelectronics", Springer 2006.

Web Resources

COs	CO Description	Cognitive
		Level
CO1	Identify and distinguish various crystal structures and the associated	CL1; CL2; CL3;
	imperfections. Demonstrate the synthesis of crystalline materials by	CL4; CL5
	different growth techniques.	
CO2		CL1; CL2; CL3;
	Understand the different perspectives of the carrier absorption and	CL4; CL5; CL6
	its transport properties.	
	Familiarize different methods for growth of thin films.	
	6	
CO3		CL1; CL2; CL3;
	To familiarize with the theoretical tools like density of states etc.	CL4; CL5
	Familiarize with the modern ideas like, quantum well and the	
	associated properties.	
CO4	Understand various nucleation theories of film growth and analyze	CL1; CL2; CL3;
	the synthesized thin films	CL4; CL5; CL6

CO5	Understanding of magnetism in condensed matter.Understand the fundamental science and quantum mechanics behind nanoelectronics.	CL1; CL2; CL3; CL4; CL5
CO6	Familiarize the spin-dependant electron transport in magnetic devices. Learn the terminology, concepts and principles of Magnetoresistance.	CL1; CL2; CL3; CL4; CL5
CO7	Differentiate between microelectronics and nanoelectronics. Understand the impact of nanoelectronics onto information technology, communication and computer science.	CL1; CL2; CL3; CL4; CL5; CL6

Course	Program Outcomes							
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
C01								
CO2								
CO3								
CO4								
CO5								
CO6								

Evaluation		Program Outcomes							
	CO1	CO2	CO3	CO4	CO5	CO6	C07		
Internal									25
External									75
Total									100

Mapping course outcomes with Internal Assessment

Components	CO1	CO2	CO3	CO4	CO5	Total
Assignment						5
Seminar						5
Test						5
Attendance						5

Total	5	5	5	5	5	25
-------	---	---	---	---	---	----

Mapping course outcomes with External Assessment

Components	CO1	CO2	CO3	CO4	CO5	Total
Short Questions						15
(5 x 3=15 Marks)						
Essay Questions						05
(3x5 = 45 Marks)						
Problems						15
(5x 3=15 Marks)						
Total						75

Rubric for Seminar

Components	Excellent (100 %)	Good (80 %)	Average (60 %)	Poor (50 %)	COs
Quality of content	Complete information with suitable examples	Complete information without suitable examples	Ignorant in Partial information with examples	Partial information without examples	All
Quality of Presentation	Perfect	Good	Average	Poor	
Question and Answers	Perfect	Good	Average	Poor	
PPT skill	Perfectly ordered with suitable schemes	Perfectly ordered without schemes	Average structuring with suitable examples	No order	

Rubric for Assignment

Components	Excellent (100 %)	Good (80 %)	Average (60 %)	Poor (50 %)	COs
Content (40%)	Complete information with suitable examples	Complete information without suitable examples	Partial information with examples	Partial information without examples	All

Structuring (30%)	Perfectly	Perfectly	Average	No order
	ordered	ordered	structuring	
	with	without	with	
	suitable	suitable	suitable	
	schemes	schemes	examples	
Drafting skill (30 %)	Good	Good	< 10 %	> 10 %
	language	language	Plagiarism	Plagiarism
	&< 2 %	&< 5 %		
	Plagiarism	Plagiarism		

Course Code	PY261
Course Title	Advanced Physics Practicals
Credits	
Hours/week	04
Category	Core Course (CC)-Practical
Semester	III & IV
Regulation	2020

Course Overview

- 1. This course highlights the importance of having hands-on experience to measure physical quantities and use practical methods to understand theoretical concepts.
- 2. It helps students to acquire experimental abilities, which are essential for physicists.
- 3. Students will be able to use various components and equipments.
- 4. Students will also be able to work efficiently and safely in a laboratory, both individually and in groups.

Course Objective

Demonstrate and understand various advanced physics experiments for acquiring fundamental concepts and analyze various experimental data.

Prerequisites Fundamental Knowledge in Physics, Chemistry and Mathematics

Sl.No	Content	Hours	COs	Cognitive
				Level
01.	e/m of an electron-Thompson's method			
02.	Charge of an electron-Millikan's method			
03.	Determination of Fermi energy of Copper			
04.	Study of variation of resistance of a semiconductor			
	with temperature and determination of band gap			
05.	Magnetic Susceptibility of a liquid using Quincke's			
	method			
06.	Ferromagnetic studies using Guoy's method			
07.	Hall effect in a semiconductor			

08.	Rydberg constant determination using grating,					
	spectrometer and discharge tubes.					
09.	Thermo-emf of bulk samples like AI, Cu. Brass etc.					
10.	Zeeman effect using Fabry-Perot Interferometer.		GO 1			
11.	Electrical characteristics of a solar cell		CO1;	CL1;		
12.	Studies using UV visible spectrophotometer		CO2;	CL2;		
13.	Refractive index of liquids and liquid mixtures		CO3;	CL3;		
	using Abbe's refractometer	02	CO4;	CL4;		
14.	Optical activity studies using Polarimeters		CO5	CL5;		
15.	Determination of temperature characteristics of a			CL6		
	Flame					
	(a) Candle flame using digital photography and					
	image analysis					
	(b) Sodium flame in comparison with incandescent					
	lamp using a spectrometer					
16.	LDR and photodiode characteristics					
17.	Simple experiments using GM counter					
18.	Determination of dielectric constant of materials					
19.	Experimental determination of Avogadro's number					
	using an electrochemical cell					
20.	Study of arc spectra and hydrogen spectra using an					
	imager (CCD) and photoelectric/electronic					
	recorder.					
21.	Analysis of the given band spectrum					
22.	Analysis of given rotation-vibration spectrum					
- 22	Interpretation wibration spectra of simple molecules					
23.	using Paman and IP spectra of simple molecules					
24	Dissociation anarry of distornia molecules					
24.	Analysis of nowder VDD date					
23.	Study of stallor spectral classification from low					
۷۵.	dispersion stellar spectral classification from low					
27	Study of HD diagram of store					
$\frac{21}{29}$	Padioactive material counting statistics					
<u>20.</u>	Interpretation of LW visible spectra of materials					
29	Weather and estronomy related image processing					
<u> </u>	weather and astronomy related image processing					
51. D.f						
1 D I	NCCS Wommon and U.T. Elint Advanced Duratical Device for a	tudonta N	lathusan G	$r C_{2} (1050)$		
1. B.L. 2 F V	worshop and H.I. FIIII - Advanced Practical Physics for s Smith - Manual of experiments in applied Physics - Dutter	worth (107)	ietnusen 8	e CO (1950)		
2.12. v.	Dunlan - Experimental Physics - Modern methods - Ovfor	d Universit	v Press (1)	988)		
4. D. M	alacara (ed) - Methods of experimental Physics - series of	volumes - A	Academic	Press Inc		
(1988)	(1088)					

5. S.P. Singh –Advanced Practical Physics – Vol I & II – Pragati Prakasan, Meerut (2003) – 13th Edition

6. A.C. Melissinos and J.Napolitano, Experiments in Modern Physics, Academic Press, 20037. K.Muraleedhara Varier, A Practical Approach to Nuclear Physics, Narosa Publishing House (2018)

Books for Reference:

Web Resources

- 1. https://vlab.amrita.edu/?sub=1&brch=282&sim=1005&cnt=1
- 2. https://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=1
- 3. https://vlab.amrita.edu/?sub=3&brch=45&sim=539&cnt=900
- 4. https://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=1
- 5. https://vlab.amrita.edu/?sub=1&brch=282&sim=879&cnt=1
- 6. http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAE/exp2/index.html

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To measure and analyze various physical quantities.	CL2, CL3
CO2	To calculate error in various advanced physics experiments.	CL2, CL4
CO3	To develop experimental skills by analyzing the problems	CL2, CL3, CL4
CO4	To analyze and point out results of experimental data.	CL4, CL5, CL6
CO5	To understand the fundamentals of physical concepts by scrutinizing the principles of an experiment	CL1,CL2,CL5

Note :

1. All the experiments should involve error analysis. Internal evaluation to be done in the respective semesters and grades to be intimated to the controller at the end of each semester itself. Practical observation book to be submitted to the examiners at the time of examination.

2. Total of 10 experiments to be done from 30

3. At least 5 experiments are to be done by a student from Sl.No 1 to 10

4. At least 2 experiments from Sl.No 11 to 20

5. At least 5 experiments are to be done by a student from Sl.No 21 to 30

Course Code	PY262E
Course Title	Advanced Electronics Practicals
Credits	
Hours/week	03
Category	Core Course (CC)-Practical
Semester	III & IV
Regulation	2020

Course Overview

- 5. This course highlights the importance of having hands-on experience to measure physical quantities and use practical methods to understand theoretical concepts.
- 6. It helps students to acquire experimental abilities, which are essential for physicists.
- 7. Students will be able to use various components and equipments.
- 8. Students will also be able to work efficiently and safely in a laboratory, both individually and in groups.

Course Objective

Design, construct and study various electronics circuits and programing using microprocessor.PrerequisitesFundamental Knowledge in Physics, Chemistry and Mathematics

Sl.No	Content	Hours	COs	Cognitive
				Level
01.	Study of active filters using OP amps (a) low pass			
	(b) high pass (c) band pass for			
	both first order and second order-gain/ roll off			
	determination			
02.	Wave form generation using OP amp circuits:			
	(a) astable and monostable multivibrators (b)			
	square, triangular and saw-tooth wave			
	generation			

03.	IC 555 timer experiments (a) monostable and			
	astable multivibrators (b) VCO			
04.	D/A convertor circuits using OP Amp 741			
05.	Differential amplifier circuits using transistors			
06.	Design of series pass voltage regulators using			
	(a) transistors with load and line regulation (b) OP		CO1;	CL1;
	Amp		CO2;	CL2;
07.	Study of IF tuned amplifier and Amplitude		CO3;	CL3;
	modulation (generation and detection) using	02	CO4;	CL4;
	transistor, diode etc.	02	CO5;	CL5;
08.	Frequency modulator and detector circuits.		CO6	CL6
09.	Pulse modulation circuits using 555 timer (a) PAM			
	(b) PWM			
10.	Digital modulation circuits (a) BFSK generation			
	using 555 timer (b) BFSK detector using 555 timer			
	and PLL (c) BPSK generation			
11.	Shift register and ring counter circuits using flip			
	flops			
12.	Miscellaneous transistor applications (a) automatic			
	night light with LDR			
	(b) invertor circuit (transistors as a switch) (c) time			
	delay circuit using SCR			
13.	BCD to decimal decoder and seven segment display			
101	using IC			
14	Design of Electronic counters (up and down			
11.	counters)			
15	8085 /8086 program to find out largest from a			
10.	group of 8bit/16 bit numbers			
16	Square wave generation using 8255A interface			
10.	using 8085/8086			
17	8086 program for block additions			
17.	Interfacing LED display board with 8085/8086			
10.	8086 program to convert binary to ASCII and			
17.	ASCII to BCD			
20	ROSE program to arrange a given data in according			
20.	and descending order			
21	2026 simple traffic light controller			
$\frac{21}{22}$	2006 program for binomy to DCD conversion and			
22.	8086 program for binary to BCD conversion and			
	vice versa			
- 22	Program of Eibonggei series weir ~ 2026			
23.	Program of Fibonacci series using 8086			
Keiere	News K. A. (2000) Electronics Let Mensel W 12 D	L D. 1.1.	~ 4th - 1	
1.	INavas, K. A. (2009). Electronics Lab Manual Vol.2, Rajat	n Publisher	s, 4 th ed	
2.	Navas, K. A. (2013). Electronics Lab Manual Vol.1, Rajat	h Publisher	$s, 5^{m}$ ed.	
3.	Zbar, Paul B, et al. (1994), Basic Electronics: a text - lab	manual, Tat	a McGrav	w-Hill
	Publishing Co.7 th ed.			
4.	Sunil Mathur, Microprocessor 8086-Architecture, Program	nming and I	Interfacing	g Pvt Ltd (
	2011)			

5. B. Ram, Fundamentals of microprocessors and microcontrollers, Dhanpat Rai Publications, New Delhi (2016).

Books for Reference:

Web Resources

- 7. https://vlab.amrita.edu/?sub=1&brch=282&sim=1005&cnt=1
- 8. https://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=1
- 9. https://vlab.amrita.edu/?sub=3&brch=45&sim=539&cnt=900
- **10.** https://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=1
- **11.** https://vlab.amrita.edu/?sub=1&brch=282&sim=879&cnt=1
- **12.** http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAE/exp2/index.html

Course Outcome (Cos) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	Design and construct various electronic circuits and its validation.	CL1; CL2; CL3; CL6
CO2	Analyse the errors in various electronics experiments.	CL4; CL5
CO3	Understand, develop and execute assembly language programs using microprocessors	CL2; CL3; CL6

Note :

1. All the experiments should involve error analysis. Internal evaluation to be done in the respective semesters and grades to be intimated to the controller at the end of each semester itself. Practical observation book to be submitted to the examiners at the time of examination.

2. Total of 12 experiments to be done from 23

3. At least 5 experiments are to be done by a student from Sl.No 1 to 06

4. At least 2 experiments from Sl.No 11 to 14

5. At least 5 experiments are to be done by a student from Sl.No 15 to 23

Course	Program Outcomes							
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
C01								
CO2								
CO3								
CO4								
CO5								
CO6								

Evaluation		Program Outcomes							Total
	CO1	CO2	CO3	CO4	CO5	CO6	C07		
Internal									25
External									75
Total									100

Mapping course outcomes with Internal Assessment

Components	CO1	CO2	CO3	CO4	CO5	Total
Punctuality						5
Experiment skill						5
Performance in Lab						5
Maintenance of Observation Records						5
Attendance						5
Total						25

Mapping course outcomes with External Assessment

Components	CO1	CO2	CO3	CO4	CO5	Total
Theory and Formula						15
Viva-voce conducted during the exam						05
Observation and Tabulation						15
Skill in performance						10

Calculation/Graph			10
Error analysis			05
Result with correct unit			05
Total			75

Rubric for Internal Assessment

Components	Excellent (100 %)	Good (80 %)	Average (60 %)	Poor (50 %)	COs
Punctuality and measures	Punctual in coming to the lab and carrying essential things	Less punctual and missing any things	Ignorant in attending practical and missing 50 % things	Not attending and no things	
Knowledge about the experiment	Exceptional knowledge about experiment	Considerable knowledge about the experiment	Minimal knowledge about the experiment	Not attended	All
Handling of apparatus and recording of observation	Accurate handling of apparatus & Accurate, precise and appropriate reporting and recording the results in SI units	Less proper but careful handling of apparatus & Wrong but appropriate reporting and use of SI units	Proper But careless handling of apparatus & Incorrect way of recording observation	Not attended	
Maintenance of record book	Perfect presentation of record in terms of completeness, neatness, well maintenance and sticking to the dead line of submission	Completing and fine maintenance of record. Adhering to the dead line	Incomplete record	Not submitting	

Course Code	PH 201
Course Title	Project
Credits	
Hours/week	02
Category	Core Course (CC)-Theory
Semester	IV
Regulation	2020
Course Overvie	ew .
1. This co	urse provides an opportunity to students to carry out literature search
thorough	ly on a specific topic following the principles of scientific research
methodo	logy
	1 1 1 1 1 2 1 1 2 1 1
2. This cou	rse helps the students to write a project proposal relevant to the topic based
on the lit	erature review.
3. A syster	natic and scientific approach to synthesize compounds/complexes and to
characte	rize them using sophisticated analytical techniques can be learnt in this
course.	
4. Analytic	al skills required to perform experiments, interpret the data and to present
the report	t with a meaningful summary and conclusion can also be acquired in this
	t with a meaningful summary and conclusion can also be acquired in this
5. 5. 1 his c	course trains the students to harness soft skill for presenting their research
findings	in front of a panel of subject experts.
Course Objecti	ve
1. To revie	w literature on a specified topic using scientific research methodology.
2. To write	the project proposal scientifically with the mention of its industrial and
commer	cial relevance also.

- 3. To carry out the synthesis of compounds/complexes and characterize them using various analytical instruments for its applications.
- 4. To learn the scientific methodology to collect and interpret the experimental data for the presentation of the report.
- 5. 5. To handle sponsored research projects of social and environmental importance.

Prerequisites Fundamental Knowledge in Physics, Chemistry and Mathematics

SYLLABUS

Expt	Content	Hours	COs	Cognitive		
				Level		
	Performing experiments related to		CO1;	CL1;		
т	industrially and socially relevant projects.		CO2;	CL2;		
1			CO3;	CL3;		
		02	CO4;	CL4;		
			CO5;	CL5;		
			CO6	CL6		
II			CO1;	CL1;		
			CO2;	CL2;		
			CO3;	CL3;		
			CO4;	CL4;		
		18	CO5;	CL5;		
		10	CO6	CL6		
Books for Study.						
Books for Deforment						
DUUKS						
web R	esources					

Project Report 50 Marks

Standard of the subject and plan Preparation and mastery Originality and logical development Summary, conclusions and references

Viva-voce 25 marks

Use of power point, teaching aids, blackboard etc. Language, Communication and diction Economy of time Answer to questions

COs	CO Description	Cognitive Level
CO1	To recall and comprehend the concepts of scientific research methodology for literature survey.	CL1; CL2
CO2	To characterize the synthesized compounds/complexes and to interpret the experimental data systematically	CL3
CO3	To design a research-oriented project independently in a particular context.	CL4
CO4	To report and summarize the findings of their project with respect to its social and environmental importance	CL4; CL5

	To acquire the skill to write a dissertation, communication skills in a presentation	
	To demonstrate the utility of various software such as Chem Draw, Origin, MS-Office etc.	
CO5	To invent and adopt novel methodologies to solve interdisciplinary projects scientifically at national and international levels and to develop the skill of communication in presentation.	CL6

Course	Program Outcomes								
Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1									
CO2									
CO3									
CO4									
CO5									
CO6									

Evaluation				Program	Outcon	nes		Total
	CO1	CO2	CO3	CO4	CO5	CO6	C07	
Internal								25
External								75
Total								100

Components	CO1	CO2	CO3	CO4	CO5	Total
Punctuality						5
Experiment skill						5
Performance in Lab						5
Maintenance of Observation Records						5
Attendance						5
Total						25

Mapping course outcomes with Internal Assessment

Mapping course outcomes with External Assessment

Components	CO1	CO2	CO3	CO4	CO5	Total
Viva-voce conducted during the exam						
Skill in performance						
Report						
Total						75

Rubric for Internal Assessment

Components	Excellent	Good	Average	Poor	COs
	(100 %)	(80 %)	(60 %)	(50 %)	
Punctuality	Punctual in coming to	Less	Ignorant in	Not	
and measures	the lab and carrying	punctual	attending	attending	
	essential things	and	practical	and no	
		missing any	and missing	things	
		things	50 % things		
Knowledge about	Exceptional knowledge	Considerable	Minimal	Not	
the	about experiment	knowledge	knowledge	attended	All
work		about the	about the		

		experiment	experiment		
Handling of	Accurate handling of	Less	Proper	Not	
apparatus	apparatus & Accurate,	proper but	But	attended	
and recording of	precise and appropriate	careful	careless		
observation	reporting and recording	handling of	handling		
	the results in SI units	apparatus &	of		
		Wrong but	apparatus		
		appropriate	&		
		reporting	Incorrect		
		and use of	way of		
		SI units	recording		
			observation		
Maintenance	Perfect presentation	Completing	Incomplete	Not	
of record	of record in terms of	and fine	record	submitting	
book	completeness, neatness,	maintenance			
	well maintenance	of record.			
	and sticking to the dead	Adhering			
	line of submission	to the dead			
		line			

Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and Course Outcome (CO) Based CIA Question Paper Format (UG)

Section		Q. NO	Cognitive Level (CL) CL1 CL2 CL3 CL4 CL5 CL0 + -					
			CL1	CL2	CL3	CL4	CL5	CL6
		1	+					
		2	+					
(1 A A		3	+					
		4	+					CL6
	(10 x 1 = 10)	5	+					
	Answer All	6		+				
		7		+				
		8		+				
		9		+				
		10		+				
		11			+			
		12			+			
		13			+			
		14			+			
		15			+			

	(8 x 2 = 16)	16			+			
В	Answer 8	17			+			
	Answer 8 out of 12 (6 x 4 = 24) Answer 6 out of 9	18				+		
		19				+		
		20				+		
		21				+		
		22				+		
		23					+	
		24					+	
		25					+	
C (6	(6 x 4 = 24)	26					+	
	Answer 6	27					+	
	out of 9	28					+	
		29					+	
		30					+ + + + + + + + + + + + + + + + + + +	
		31					+ + + + + + + + + + + + + + + + + + +	
		32						+
	$(2 \times 15 = 30)$	33						+
D	Answer 2 out of 4	34						+
		35						+
No. of C	L based Questio	ns with	5 (5)	5 (5)	4(2)	4(2)	6(4)	2(15)
No. of C	O based Questio	ns with	C01	C02	CO3	<u>CO4</u>	C05	C06
110.010	Max marks	115 1111	10	(10)				2(20)
	mar. mars		10	(10)	8(.	10)	6(24)	2(30)

Bishop Moore College, Mavelikara Department of Physics First Semester M.Sc Degree Examination , June, 2022

First Continuous Assessment Examination

PH 211: CLASSICAL MECHANICS

TIME: 2 hrs

Max: 50 marks

SECTION A

Learning Outcome (LOC) BASED	End Semester Examination Cognitive Level (CL)
and Course Outcome (CO)	Based CIA Question Paper Format (UG)

Section		Q. NO		Cognitive Level (CL)						
			CL1	CL2	CL3	CL4	CL5	CL6		
		1	+							
		2	+							
		3	+							
		4	+							
	(5 x 3 = 15)	5	+							
А	Answer 5	6		+						
	out of 8	7		+						
		8		+						
		11(a)			+					
		11(b)			+					
		12(a)			+					
		12(b)			+					
		13(a)			+					
	$(3 \times 15 = 45)$	13(b)			+					
В	Answer 8 out of 12									
		14					+			
		15					+			
		16					+			
	$(3 \times 5 = 15)$	17					+			
C	Answer 3	18					+			
	out of 5									
No. of C	L based Questio	ons with								
No. of C	Ω based Questic	ons with	C01	C02	C03	C04	C05	C06		
110.010	Max. marks	/110 W 1011	2	(5)	15	(3)	5(3)	000		
			5	(\mathbf{J})	15	(J)	5(5)			

Bishop Moore College, Mavelikara Department of Physics First Semester B.Sc Degree Examination , June, 2022 End Semester Examination PH 211: CLASSICAL MECHANICS

TIME: 3 hrs

Max: 75 marks

SECTION A

Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and Course Outcome (CO) Based LAB CIA Examination (UG)

Assessment	Criteria	Marks	Cognitive Level (CL)					
			CL1	CL2	CL3	CL4	CL5	CL6
Semester	Formula, circuit, graph, brief procedure	20	+					
Practical Examination	Setting and experimental skill	15		Cognitive Level (CL) CL1 CL2 CL3 CL4 CL5 + - - - - - + - - - - - + - - + - - - + - - + - - - + - + - - - - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -				
for 80 marks	Observations and tabulations	15	Cognitive Level (CL) CL1 CL2 CL3 CL4 CL5 C 0 + - <					
	Substitution, calculation, result with correct unit	20			>gnitive Level (CL) CL3 CL4 CL3 CL4 +	+		
	Certified record with 18 experiments	10				Evel (CL) CL4 CL5 + + +		
No. of CL ba	sed Questions with Max. man	rks						
No. of CO based Questions with Max. marks		rks						
Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and Course Outcome (CO) Based LAB End Semester Examination (UG)

Assessment	Criteria	Marks	Cognitive Level (CL)					
			CL1	CL2	CL3	CL4	CL5	CL6
Semester Practical Examination for 80 marks	Formula, circuit, graph,	20	+					
	brief procedure							
	Setting and experimental	15		+				
	skill			-				
	Observations and	15			+			
	tabulations							
	Substitution, calculation,	20					+	+
	result with correct unit						•	'
	Certified record with 18 experiments	10				+		
No. of CL based Questions with Max. marks								
No. of CO based Questions with Max. marks								

Learning Outcome (LOC) BASED Continuous Assessments Cognitive Level (CL) and	d
Course Outcome (CO) Based Project and Tour Report Examination (UG)	

Assessment	Criteria	Marks	Cognitive Level (CL)					
			CL1	CL2	CL3	CL4	CL5	CL6
Semester Practical Examination for 80 marks	Originality of approach	20	+					
	Relevance of the topic	15		+				
	Involvement	15			+			
	Viva-voce	20					+	+
	Presentation of report	10				+		
	Research Institute/	30						
	Science museum visit							
	and Report							
No. of CL based Questions with Max. marks		rks						
No. of CO based Questions with Max. marks								